Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892403

RESUMO

Bakanae disease (BD), caused by the fungal pathogen Fusarium fujikuroi, is a serious threat to rice production worldwide. Breeding elite rice varieties resistant to BD requires the identification of resistance genes. Previously, we discovered a resistant quantitative trait locus (QTL), qFfR1, in a Korean japonica rice variety, Nampyeong. In this study, we fine-mapped qFfR1 with a Junam*4/Nampyeong BC3F3 population and delimited its location to a 37.1 kb region on chromosome 1. Complementation experiments with seven candidate genes in this region revealed that OsI_02728 is the gene for qFfR1. This gene encodes a protein with a typical leucine-rich repeat (LRR) receptor-like protein structure. RNA-sequencing-based transcriptomic analysis revealed that FfR1 induces the transcription of defense genes, including lignin and terpenoid biosynthesis genes, pathogenesis-related genes, and thionin genes. These results may facilitate investigations into the molecular mechanisms underlying BD resistance, including molecular patterns of Fusarium fujikuroi interacting with FfR1 and players working in signal transduction pathways downstream of FfR1, and the breeding of new BD-resistant varieties by providing a BD resistance gene with its precise selection marker. This will contribute to efficient control of BD, which is becoming more prevalent according to temperature rises due to climate change.


Assuntos
Mapeamento Cromossômico , Resistência à Doença , Fusarium , Oryza , Doenças das Plantas , Locos de Características Quantitativas , Oryza/genética , Oryza/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Fusarium/patogenicidade , Clonagem Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Cromossomos de Plantas/genética
2.
Genes (Basel) ; 13(5)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35627177

RESUMO

The development of efficient, robust, and high-throughput SNP genotyping platforms is pivotal for crop genetics and breeding. Recently, SNP genotyping platforms based on target capture sequencing, which is very flexible in terms of the number of SNP markers, have been developed for maize, cassava, and fava bean. We aimed to develop a target capture sequencing SNP genotyping platform for rice. A target capture sequencing panel containing 2565 SNPs, including 1225 SNPs informative for japonica and 1339 SNPs informative for indica, was developed. This platform was used in diversity analysis of 50 rice varieties. Of the 2565 SNP markers, 2341 (91.3%) produced useful polymorphic genotype data, enabling the production of a phylogenetic tree of the 50 varieties. The mean number of markers polymorphic between any two varieties was 854. The platform was used for QTL mapping of preharvest sprouting (PHS) resistance in an F8 recombinant inbred line population derived from the cross Odae × Joun. A genetic map comprising 475 markers was constructed, and two QTLs for PHS resistance were identified on chromosomes 4 and 11. This system is a powerful tool for rice genetics and breeding and will facilitate QTL studies and gene mapping, germplasm diversity analysis, and marker-assisted selection.


Assuntos
Oryza , Genótipo , Oryza/genética , Filogenia , Melhoramento Vegetal , Locos de Características Quantitativas/genética
3.
Genes (Basel) ; 12(11)2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34828355

RESUMO

Next-generation sequencing technologies have enabled the discovery of numerous sequence variations among closely related crop varieties. We analyzed genome resequencing data from 24 Korean temperate japonica rice varieties and discovered 954,233 sequence variations, including 791,121 single nucleotide polymorphisms (SNPs) and 163,112 insertions/deletions (InDels). On average, there was one variant per 391 base-pairs (bp), a variant density of 2.6 per 1 kbp. Of the InDels, 10,860 were longer than 20 bp, which enabled conversion to markers resolvable on an agarose gel. The effect of each variant on gene function was predicted using the SnpEff program. The variants were categorized into four groups according to their impact: high, moderate, low, and modifier. These groups contained 3524 (0.4%), 27,656 (2.9%), 24,875 (2.6%), and 898,178 (94.1%) variants, respectively. To test the accuracy of these data, eight InDels from a pre-harvest sprouting resistance QTL (qPHS11) target region, four highly polymorphic InDels, and four functional sequence variations in known agronomically important genes were selected and successfully developed into markers. These results will be useful to develop markers for marker-assisted selection, to select candidate genes in map-based cloning, and to produce efficient high-throughput genome-wide genotyping systems for Korean temperate japonica rice varieties.


Assuntos
Mutação INDEL , Oryza/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma/métodos , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Oryza/genética , Locos de Características Quantitativas , República da Coreia
4.
Plant J ; 61(1): 96-106, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19807881

RESUMO

Although susceptibility to seed shattering causes severe yield loss during cereal crop harvest, it is an adaptive trait for seed dispersal in wild plants. We previously identified a recessive shattering locus, sh-h, from the rice shattering mutant line Hsh that carries an enhanced abscission layer. Here, we further mapped sh-h to a 34-kb region on chromosome 7 by analyzing 240 F(2) plants and five F(3) lines from the cross between Hsh and Blue&Gundil. Hsh had a point mutation at the 3' splice site of the seventh intron within LOC_Os07g10690, causing a 15-bp deletion of its mRNA as a result of altered splicing. Two transferred DNA (T-DNA) insertion mutants and one point mutant exhibited the enhanced shattering phenotype, confirming that LOC_Os07g10690 is indeed the sh-h gene. RNA interference (RNAi) transgenic lines with suppressed expression of this gene exhibited greater shattering. This gene, which encodes a protein containing a conserved carboxy-terminal domain (CTD) phosphatase domain, was named Oryza sativa CTD phosphatase-like 1 (OsCPL1). Subcellular localization and biochemical analysis revealed that the OsCPL1 protein is a nuclear phosphatase, a common characteristic of metazoan CTD phosphatases involved in cell differentiation. These results demonstrate that OsCPL1 represses differentiation of the abscission layer during panicle development.


Assuntos
Oryza/crescimento & desenvolvimento , Fosfoproteínas Fosfatases/fisiologia , Proteínas de Plantas/fisiologia , Sementes/crescimento & desenvolvimento , Sequência de Aminoácidos , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , Oryza/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Mutação Puntual/genética , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sementes/genética , Homologia de Sequência de Aminoácidos
5.
Mol Cells ; 26(2): 146-51, 2008 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-18612237

RESUMO

The brown planthopper (BPH) is a major insect pest in rice, and damages these plants by sucking phloem-sap and transmitting viral diseases. Many BPH resistance genes have been identified in indica varieties and wild rice accessions, but none has yet been cloned. In the present study we report fine mapping of the region containing the Bph1 locus, which enabled us to perform marker-aided selection (MAS). We used 273 F8 recombinant inbred lines (RILs) derived from a cross between Cheongcheongbyeo, an indica type variety harboring Bph1 from Mudgo, and Hwayeongbyeo, a BPH susceptible japonica variety. By random amplification of polymorphic DNA (RAPD) analysis using 656 random 10-mer primers, three RAPD markers (OPH09, OPA10 and OPA15) linked to Bph1 were identified and converted to SCAR (sequence characterized amplified region) markers. These markers were found to be contained in two BAC clones derived from chromosome 12: OPH09 on OSJNBa0011B18, and both OPA10 and OPA15 on OSJNBa0040E10. By sequence analysis of ten additional BAC clones evenly distributed between OSJNBa0011B18 and OSJNBa0040E10, we developed 15 STS markers. Of these, pBPH4 and pBPH14 flanked Bph1 at distances of 0.2 cM and 0.8 cM, respectively. The STS markers pBPH9, pBPH19, pBPH20, and pBPH21 co-segregated with Bph1. These markers were shown to be very useful for marker-assisted selection (MAS) in breeding populations of 32 F6 RILs from a cross between Andabyeo and IR71190, and 32 F5 RILs from a cross between Andabyeo and Suwon452.


Assuntos
Mapeamento Cromossômico/métodos , Genes de Plantas/genética , Marcadores Genéticos/genética , Hemípteros , Oryza/genética , Doenças das Plantas/parasitologia , Animais , Sitios de Sequências Rotuladas
6.
Planta ; 227(1): 1-12, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17624547

RESUMO

OSH6 (Oryza sativa Homeobox6) is an ortholog of lg3 (Liguleless3) in maize. We generated a novel allele, termed OSH6-Ds, by inserting a defective Ds element into the third exon of OSH6, which resulted in a truncated OSH6 mRNA. The truncated mRNA was expressed ectopically in leaf tissues and encoded the N-terminal region of OSH6, which includes the KNOX1 and partial KNOX2 subdomains. This recessive mutant showed outgrowth of bracts or produced leaves at the basal node of the panicle. These phenotypes distinguished it from the OSH6 transgene whose ectopic expression led to a "blade to sheath transformation" phenotype at the midrib region of leaves, similar to that seen in dominant Lg3 mutants. Expression of a similar truncated OSH6 cDNA from the 35S promoter (35S::DeltaOSH6) confirmed that the ectopic expression of this product was responsible for the aberrant bract development. These data suggest that OSH6-Ds interferes with a developmental mechanism involved in bract differentiation, especially at the basal nodes of panicles.


Assuntos
Proteínas de Homeodomínio/genética , Mutação , Oryza/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/fisiologia , Microscopia Confocal , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Mutagênese Insercional , Oryza/crescimento & desenvolvimento , Oryza/ultraestrutura , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/ultraestrutura , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhizobium/genética , Alinhamento de Sequência , Transformação Genética/genética
7.
Plant Mol Biol ; 65(4): 373-84, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17611799

RESUMO

Insertional mutagen-mediated gene tagging populations have been essential resources for analyzing the function of plant genes. In rice, maize transposable elements have been successfully utilized to produce transposant populations. However, many generations and substantial field space are required to obtain a sufficiently sized transposant population. In rice, the japonica and indica subspecies are phenotypically and genetically divergent. Here, callus cultures with seeds carrying Ac and Ds were used to produce 89,700 lines of Dongjin, a japonica cultivar, and 6,200 lines of MGRI079, whose genome is composed of a mixture of the genetic backgrounds of japonica and indica. Of the more than 3,000 lines examined, 67% had Ds elements. Among the Ds-carrying lines, 81% of Dongjin and 63% of MGRI079 contained transposed Ds, with an average of around 2.0 copies. By examining more than 15,000 lines, it was found that 12% expressed the reporter gene GUS during the early-seedling stage. GUS was expressed in root hairs and crown root initials at estimated frequencies of 0.78% and 0.34%, respectively. The 5,271 analyzed Ds loci were found to be randomly distributed over all of the rice chromosomes.


Assuntos
Genes de Plantas , Oryza/genética , Sequência de Bases , Mapeamento Cromossômico , Cromossomos de Plantas , Primers do DNA , Glucuronidase/genética , Coreia (Geográfico) , Mutagênese Insercional
8.
Mol Cells ; 21(2): 192-6, 2006 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-16682812

RESUMO

Salt tolerance was evaluated at the young seedling stage of rice (Oryza sativa L.) using recombinant inbred lines (MG RILs) from a cross between Milyang 23 (japonica/indica) and Gihobyeo (japonica). 22 of 164 MG RILs were classified as tolerant with visual scores of 3.5-5.0 in 0.7% NaCl. Interval mapping of QTLs related to salt tolerance was conducted on the basis of the visual scores at the young seedling stage. Two QTLs, qST1 and qST3, conferring salt tolerance, were detected on chromosome 1 and 3, respectively, and the total phenotypic variance explained by the two QTLs was 36.9% in the MG RIL population. qST1 was the major QTL explaining 27.8% of the total phenotypic variation. qST1 was flanked by Est12-RZ569A, and qST3 was flanked by RG179-RZ596. The detection of new QTLs associated with salt tolerance will provide important information for the functional analysis of rice salt tolerance.


Assuntos
Oryza/genética , Locos de Características Quantitativas , Sais , Plântula/fisiologia , Genótipo , Oryza/fisiologia , Fenótipo
9.
Plant J ; 39(2): 252-63, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15225289

RESUMO

Rapid, large-scale generation of a Ds transposant population was achieved using a regeneration procedure involving tissue culture of seed-derived calli carrying Ac and inactive Ds elements. In the F(2) progeny from genetic crosses between the same Ds and Ac starter lines, most of the crosses produced an independent germinal transposition frequency of 10-20%. Also, many Ds elements underwent immobilization even though Ac was expressed. By comparison, in a callus-derived regenerated population, over 70% of plants carried independent Ds insertions, indicating transposition early in callus formation. In the remaining population, the majority of plants carried only Ac. Most of the new Ds insertions were stably transmitted to a subsequent generation. An exceptionally high proportion of independent transposants in the regenerated population means that selection markers for transposed Ds and continual monitoring of Ac/Ds activities may not necessarily be required. By analyzing 1297 Ds-flanking DNA sequences, a genetic map of 1072 Ds insertion sites was developed. The map showed that Ds elements were transposed onto all of the rice chromosomes, with preference not only near donor sites (36%) but also on certain physically unlinked arms. Populations from both genetic crossing and tissue culture showed the same distribution patterns of Ds insertion sites. The information of these mapped Ds insertion sites was deposited in GenBank. Among them, 55% of Ds elements were on predicted open-reading frame (ORF) regions. Thus, we propose an optimal strategy for the rapid generation of a large population of Ds transposants in rice.


Assuntos
Elementos de DNA Transponíveis , Genoma de Planta , Oryza/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Técnicas de Cultura , DNA Bacteriano/genética , DNA de Plantas/genética , Técnicas de Transferência de Genes , Vetores Genéticos , Modelos Genéticos , Mutagênese Insercional , Regiões Promotoras Genéticas , Regeneração , Sementes/genética , Sementes/crescimento & desenvolvimento , Transformação Genética
10.
Mol Cells ; 14(2): 231-7, 2002 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-12442895

RESUMO

Many aspects of epigenetic phenomena have been elucidated via studies of transposable elements. An active transposable element frequently loses its ability to mobilize and goes into an inactive state during development. In this study, we describe the cyclic activity of a maize transposable element dissociation (Ds) in rice. In rice genome, Ds undergoes the spontaneous loss of mobility. However, an inactive state of Ds can be changed into an active state during tissue culture. The recovery of mobility accompanies not only changes in the methylation patterns of the terminal region of Ds, but also alteration in the steady state level of the activator (Ac) mRNA that is expressed by a constitutive CaMV 35S promoter. Furthermore, the Ds-reactivation process is not random, but stage-specific during plantlet regeneration. Our findings have expanded previous observations on Ac reactivation in the tissue culture of maize.


Assuntos
Elementos de DNA Transponíveis , Oryza/crescimento & desenvolvimento , Oryza/genética , Elementos de DNA Transponíveis/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Zea mays/genética
11.
Cryo Letters ; 23(4): 209-16, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12391481

RESUMO

This study investigated the tolerance to desiccation and freezing of tea seeds, embryonic axes (EAs) and cotyledonary embryonic axes (CEAs, consisting of EAs with portions of cotyledons still attached). No seeds germinated after desiccation and cryopreservation. EAs extracted from seeds desiccated to 18.9% moisture content (fresh weight basis) and cryopreserved showed 20.7% survival but plantlet production from these EAs was impossible. When EAs and CEAs were extracted from seeds before being submitted to desiccation and freezing, survival of control and frozen samples was equivalent with both types of materials. However, plantlet production was significantly higher from control and cryopreserved CEAs than EAs. The maturity stage of the seeds from which CEAs were extracted had an important effect on their survival and plant production percentages, mature seeds providing better results than early mature and late mature seeds. The highest percentages of plantlet production from cryopreserved CEAs, which ranged between 75.1 and 80.4%, were achieved for EA moisture contents between 21.5 and 15.0%.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Criopreservação/métodos , Sementes/crescimento & desenvolvimento , Camellia sinensis/embriologia , Cotilédone/crescimento & desenvolvimento , Dessecação , Germinação , Humanos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...