Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hear Res ; 343: 118-127, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27306930

RESUMO

Crossmodal plasticity takes place following sensory loss, such that areas that normally process the missing modality are reorganized to provide compensatory function in the remaining sensory systems. For example, congenitally deaf cats outperform normal hearing animals on localization of visual stimuli presented in the periphery, and this advantage has been shown to be mediated by the posterior auditory field (PAF). In order to determine the nature of the anatomical differences that underlie this phenomenon, we injected a retrograde tracer into PAF of congenitally deaf animals and quantified the thalamic and cortical projections to this field. The pattern of projections from areas throughout the brain was determined to be qualitatively similar to that previously demonstrated in normal hearing animals, but with twice as many projections arising from non-auditory cortical areas. In addition, small ectopic projections were observed from a number of fields in visual cortex, including areas 19, 20a, 20b, and 21b, and area 7 of parietal cortex. These areas did not show projections to PAF in cats deafened ototoxically near the onset of hearing, and provide a possible mechanism for crossmodal reorganization of PAF. These, along with the possible contributions of other mechanisms, are considered.


Assuntos
Córtex Auditivo/fisiopatologia , Surdez/fisiopatologia , Audição , Plasticidade Neuronal , Tálamo/fisiopatologia , Adaptação Fisiológica , Adaptação Psicológica , Animais , Vias Auditivas/fisiopatologia , Percepção Auditiva , Comportamento Animal , Gatos , Surdez/congênito , Surdez/psicologia , Modelos Animais de Doenças , Feminino , Técnicas de Rastreamento Neuroanatômico , Córtex Visual/fisiopatologia , Percepção Visual
2.
J Comp Neurol ; 524(15): 3042-63, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27019080

RESUMO

Following sensory loss, compensatory crossmodal reorganization occurs such that the remaining modalities are functionally enhanced. For example, behavioral evidence suggests that peripheral visual localization is better in deaf than in normal hearing animals, and that this enhancement is mediated by recruitment of the posterior auditory field (PAF), an area that is typically involved in localization of sounds in normal hearing animals. To characterize the anatomical changes that underlie this phenomenon, we identified the thalamic and cortical projections to the PAF in hearing cats and those with early- and late-onset deafness. The retrograde tracer biotinylated dextran amine was deposited in the PAF unilaterally, to label cortical and thalamic afferents. Following early deafness, there was a significant decrease in callosal projections from the contralateral PAF. Late-deaf animals showed small-scale changes in projections from one visual cortical area, the posterior ectosylvian field (EPp), and the multisensory zone (MZ). With the exception of these minor differences, connectivity to the PAF was largely similar between groups, with the principle projections arising from the primary auditory cortex (A1) and the ventral division of the medial geniculate body (MGBv). This absence of large-scale connectional change suggests that the functional reorganization that follows sensory loss results from changes in synaptic strength and/or unmasking of subthreshold intermodal connections. J. Comp. Neurol. 524:3042-3063, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Córtex Auditivo/patologia , Surdez/patologia , Tálamo/patologia , Animais , Córtex Auditivo/crescimento & desenvolvimento , Córtex Auditivo/fisiopatologia , Vias Auditivas/crescimento & desenvolvimento , Vias Auditivas/patologia , Vias Auditivas/fisiopatologia , Gatos , Contagem de Células , Surdez/fisiopatologia , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Técnicas de Rastreamento Neuroanatômico , Plasticidade Neuronal , Neurônios/patologia , Tálamo/crescimento & desenvolvimento , Tálamo/fisiopatologia
3.
J Comp Neurol ; 524(13): 2623-42, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-26850989

RESUMO

The superior colliculus (SC) is a midbrain structure central to orienting behaviors. The organization of descending projections from sensory cortices to the SC has garnered much attention; however, rarely have projections from multiple modalities been quantified and contrasted, allowing for meaningful conclusions within a single species. Here, we examine corticotectal projections from visual, auditory, somatosensory, motor, and limbic cortices via retrograde pathway tracers injected throughout the superficial and deep layers of the cat SC. As anticipated, the majority of cortical inputs to the SC originate in the visual cortex. In fact, each field implicated in visual orienting behavior makes a substantial projection. Conversely, only one area of the auditory orienting system, the auditory field of the anterior ectosylvian sulcus (fAES), and no area involved in somatosensory orienting, shows significant corticotectal inputs. Although small relative to visual inputs, the projection from the fAES is of particular interest, as it represents the only bilateral cortical input to the SC. This detailed, quantitative study allows for comparison across modalities in an animal that serves as a useful model for both auditory and visual perception. Moreover, the differences in patterns of corticotectal projections between modalities inform the ways in which orienting systems are modulated by cortical feedback. J. Comp. Neurol. 524:2623-2642, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Córtex Auditivo/anatomia & histologia , Lobo Límbico/anatomia & histologia , Córtex Motor/anatomia & histologia , Córtex Somatossensorial/anatomia & histologia , Colículos Superiores/anatomia & histologia , Córtex Visual/anatomia & histologia , Animais , Córtex Auditivo/fisiologia , Vias Auditivas/anatomia & histologia , Vias Auditivas/fisiologia , Gatos , Feminino , Lobo Límbico/fisiologia , Córtex Motor/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Córtex Somatossensorial/fisiologia , Colículos Superiores/fisiologia , Córtex Visual/fisiologia
4.
Hear Res ; 333: 25-36, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26724756

RESUMO

Early hearing loss leads to crossmodal plasticity in regions of the cerebrum that are dominated by acoustical processing in hearing subjects. Until recently, little has been known of the connectional basis of this phenomenon. One region whose crossmodal properties are well-established is the auditory field of the anterior ectosylvian sulcus (FAES) in the cat, where neurons are normally responsive to acoustic stimulation and its deactivation leads to the behavioral loss of accurate orienting toward auditory stimuli. However, in early-deaf cats, visual responsiveness predominates in the FAES and its deactivation blocks accurate orienting behavior toward visual stimuli. For such crossmodal reorganization to occur, it has been presumed that novel inputs or increased projections from non-auditory cortical areas must be generated, or that existing non-auditory connections were 'unmasked.' These possibilities were tested using tracer injections into the FAES of adult cats deafened early in life (and hearing controls), followed by light microscopy to localize retrogradely labeled neurons. Surprisingly, the distribution of cortical and thalamic afferents to the FAES was very similar among early-deaf and hearing animals. No new visual projection sources were identified and visual cortical connections to the FAES were comparable in projection proportions. These results support an alternate theory for the connectional basis for cross-modal plasticity that involves enhanced local branching of existing projection terminals that originate in non-auditory as well as auditory cortices.


Assuntos
Córtex Auditivo/fisiopatologia , Perda Auditiva/fisiopatologia , Audição , Plasticidade Neuronal , Tálamo/fisiopatologia , Córtex Visual/fisiopatologia , Estimulação Acústica , Adaptação Fisiológica , Fatores Etários , Animais , Córtex Auditivo/crescimento & desenvolvimento , Vias Auditivas/fisiopatologia , Percepção Auditiva , Gatos , Modelos Animais de Doenças , Perda Auditiva/induzido quimicamente , Perda Auditiva/psicologia , Canamicina , Técnicas de Rastreamento Neuroanatômico , Estimulação Luminosa , Tálamo/crescimento & desenvolvimento , Córtex Visual/crescimento & desenvolvimento , Percepção Visual
5.
J Comp Neurol ; 523(15): 2297-320, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25879955

RESUMO

Following sensory deprivation, primary somatosensory and visual cortices undergo crossmodal plasticity, which subserves the remaining modalities. However, controversy remains regarding the neuroplastic potential of primary auditory cortex (A1). To examine this, we identified cortical and thalamic projections to A1 in hearing cats and those with early- and late-onset deafness. Following early deafness, inputs from second auditory cortex (A2) are amplified, whereas the number originating in the dorsal zone (DZ) decreases. In addition, inputs from the dorsal medial geniculate nucleus (dMGN) increase, whereas those from the ventral division (vMGN) are reduced. In late-deaf cats, projections from the anterior auditory field (AAF) are amplified, whereas those from the DZ decrease. Additionally, in a subset of early- and late-deaf cats, area 17 and the lateral posterior nucleus (LP) of the visual thalamus project concurrently to A1. These results demonstrate that patterns of projections to A1 are modified following deafness, with statistically significant changes occurring within the auditory thalamus and some cortical areas. Moreover, we provide anatomical evidence for small-scale crossmodal changes in projections to A1 that differ between early- and late-onset deaf animals, suggesting that potential crossmodal activation of primary auditory cortex differs depending on the age of deafness onset.


Assuntos
Córtex Auditivo/patologia , Vias Auditivas/patologia , Surdez/patologia , Neurônios/patologia , Tálamo/patologia , Idade de Início , Animais , Córtex Auditivo/crescimento & desenvolvimento , Córtex Auditivo/fisiopatologia , Vias Auditivas/crescimento & desenvolvimento , Vias Auditivas/fisiopatologia , Gatos , Surdez/fisiopatologia , Modelos Animais , Técnicas de Rastreamento Neuroanatômico , Plasticidade Neuronal , Neurônios/fisiologia , Fotomicrografia , Tálamo/crescimento & desenvolvimento , Tálamo/fisiopatologia
6.
J Comp Neurol ; 523(13): 1925-47, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25764419

RESUMO

Cross-modal reorganization following the loss of input from a sensory modality can recruit sensory-deprived cortical areas to process information from the remaining senses. Specifically, in early-deaf cats, the anterior auditory field (AAF) is unresponsive to auditory stimuli but can be activated by somatosensory and visual stimuli. Similarly, AAF neurons respond to tactile input in adult-deafened animals. To examine anatomical changes that may underlie this functional adaptation following early or late deafness, afferent projections to AAF were examined in hearing cats, and cats with early- or adult-onset deafness. Unilateral deposits of biotinylated dextran amine were made in AAF to retrogradely label cortical and thalamic afferents to AAF. In early-deaf cats, ipsilateral neuronal labeling in visual and somatosensory cortices increased by 329% and 101%, respectively. The largest increases arose from the anterior ectosylvian visual area and the anterolateral lateral suprasylvian visual area, as well as somatosensory areas S2 and S4. Consequently, labeling in auditory areas was reduced by 36%. The age of deafness onset appeared to influence afferent connectivity, with less marked differences observed in late-deaf cats. Profound changes to visual and somatosensory afferent connectivity following deafness may reflect corticocortical rewiring affording acoustically deprived AAF with cross-modal functionality.


Assuntos
Vias Aferentes/fisiologia , Surdez/patologia , Córtex Somatossensorial/patologia , Córtex Visual/patologia , Estimulação Acústica , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Gatos , Surdez/fisiopatologia , Dextranos/metabolismo , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Masculino , Proteínas de Neurofilamentos/metabolismo , Sensação , Fatores de Tempo
7.
J Comp Neurol ; 522(3): 654-75, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23897533

RESUMO

Cat auditory cortex is known to undergo cross-modal reorganization following deafness, such that behavioral advantages in visual motion detection are abolished when a specific region of deaf auditory cortex, the dorsal zone (DZ), is deactivated. The purpose of the present investigation was to examine the connectional adaptations that might subserve this plasticity. We deposited biotinylated dextran amine (BDA; 3,000 MW), a retrograde tracer, unilaterally into the posterior portion of the suprasylvian fringe, corresponding to area DZ of hearing, early-deafened (onset <1 month), and late-deafened (onset >3 months) cats to reveal cortical afferent projections. Overall, the pattern of cortical projections to DZ was similar in both hearing and deafened animals. However, there was a progressive increase in projection strength among hearing and late- and early-deafened cats from an extrastriate visual cortical region known to be involved in the processing of visual motion, the posterolateral lateral suprasylvian area (PLLS). Additionally, although no such change was documented for the posteromedial lateral suprasylvian area (PMLS), labeled neurons were present within a subregion of PMLS devoted to foveal vision in both late- and early-deafened animals but not in hearing controls. PMLS is also an extrastriate visual motion processing area and is widely considered to be the homolog of primate middle temporal area. No changes in auditory cortical connectivity were observed among groups. These observations suggest that amplified cortical projections from extrastriate visual areas involved in visual motion processing to DZ may contribute to the cross-modal reorganization that functionally manifests as superior visual motion detection ability in the deaf animal.


Assuntos
Córtex Auditivo/crescimento & desenvolvimento , Córtex Auditivo/patologia , Surdez/patologia , Plasticidade Neuronal/fisiologia , Neurônios/patologia , Córtex Visual/fisiologia , Vias Aferentes/fisiologia , Idade de Início , Animais , Animais Recém-Nascidos , Biotina/análogos & derivados , Gatos , Dextranos , Modelos Animais de Doenças , Lateralidade Funcional , Proteínas de Neurofilamentos/metabolismo , Neurônios/metabolismo , Estimulação Luminosa
8.
Cereb Cortex ; 24(7): 1778-92, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23413302

RESUMO

Cross-modal plasticity following peripheral sensory loss enables deprived cortex to provide enhanced abilities in remaining sensory systems. These functional adaptations have been demonstrated in cat auditory cortex following early-onset deafness in electrophysiological and psychophysical studies. However, little information is available concerning any accompanying structural compensations. To examine the influence of sound experience on areal cartography, auditory cytoarchitecture was examined in hearing cats, early-deaf cats, and cats with late-onset deafness. Cats were deafened shortly after hearing onset or in adulthood. Cerebral cytoarchitecture was revealed immunohistochemically using SMI-32, a monoclonal antibody used to distinguish auditory areas in many species. Auditory areas were delineated in coronal sections and their volumes measured. Staining profiles observed in hearing cats were conserved in early- and late-deaf cats. In all deaf cats, dorsal auditory areas were the most mutable. Early-deaf cats showed further modifications, with significant expansions in second auditory cortex and ventral auditory field. Borders between dorsal auditory areas and adjacent visual and somatosensory areas were shifted ventrally, suggesting expanded visual and somatosensory cortical representation. Overall, this study shows the influence of acoustic experience in cortical development, and suggests that the age of auditory deprivation may significantly affect auditory areal cartography.


Assuntos
Córtex Auditivo/fisiopatologia , Surdez/patologia , Estimulação Acústica , Idade de Início , Análise de Variância , Animais , Córtex Auditivo/metabolismo , Biotina/análogos & derivados , Gatos , Cóclea/lesões , Surdez/induzido quimicamente , Dextranos , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Proteínas de Neurofilamentos/metabolismo , Privação Sensorial/fisiologia , Técnicas Estereotáxicas
9.
Hear Res ; 300: 33-45, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23500650

RESUMO

The superior colliculus (SC) is critical for directing accurate head and eye movements to visual and acoustic targets. In visual cortex, areas involved in orienting of the head and eyes to a visual stimulus have direct projections to the SC. In auditory cortex of the cat, four areas have been identified to be critical for the accurate orienting of the head and body to an acoustic stimulus. These areas include primary auditory cortex (A1), the posterior auditory field (PAF), the dorsal zone of auditory cortex (DZ), and the auditory field of the anterior ectosylvian sulcus (fAES). Therefore, we hypothesized that these four regions of auditory cortex would have direct projections to the SC. To test this hypothesis, deposits of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) were made into the superficial and deep layers of the SC to label, by means of retrograde transport, the auditory cortical origins of the corticotectal pathway. Bilateral examination of auditory cortex revealed that the vast majority of the labeled cells were located in the hemisphere ipsilateral to the SC injection. In ipsilateral auditory cortex, nearly all the labeled neurons were found in the infragranular layers, predominately in layer V. The largest population of labeled cells was located in the fAES. Few labeled neurons were identified in A1, PAF, or DZ. Thus, in contrast to the visual system, only one of the auditory cortical areas involved in orienting to an acoustic stimulus has a strong direct projection to the SC. Sound localization signals processed in primary (A1) and other non-primary (PAF and DZ) auditory cortices may be transmitted to the SC via a multi-synaptic corticotectal network.


Assuntos
Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Neurônios/fisiologia , Localização de Som , Colículos Superiores/fisiologia , Estimulação Acústica , Animais , Córtex Auditivo/citologia , Vias Auditivas/citologia , Gatos , Movimentos Oculares , Feminino , Movimentos da Cabeça , Técnicas de Rastreamento Neuroanatômico , Colículos Superiores/citologia , Transmissão Sináptica
10.
J Neurosci ; 33(2): 776-89, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23303954

RESUMO

In contrast to numerous studies of transcallosal communication in visual and somatosensory cortices, the functional properties of interhemispheric connections between auditory cortical fields have not been widely scrutinized. Therefore, the purpose of the present investigation was to measure the magnitude and type (inhibitory/excitatory) of modulatory properties of core auditory fields on contralateral primary auditory cortex (A1) activity. We combined single-unit neuronal recordings with reversible cooling deactivation techniques to measure variations in contralateral A1 response levels during A1, anterior auditory field (AAF), or simultaneous A1 and AAF neuronal discharge suppression epochs in cat auditory cortex. Cortical activity was evoked by presentation of pure tones, noise bursts, and frequency-modulated (FM) sweeps before, during, and after cortical deactivation periods. Comparisons of neuronal response changes before and during neuronal silencing revealed three major findings. First, deactivation of A1 and AAF-induced significant peak response reductions in contralateral A1 activity during simple (tonal) and complex (noise bursts and FM sweeps) acoustic exposure. Second, decreases in A1 neuronal activity appear to be in agreement with anatomical laminar termination patterns emanating from contralateral auditory cortex fields. Third, modulatory properties of core auditory areas lack hemispheric lateralization. These findings demonstrate that during periods of acoustic exposure, callosal projections emanating from core auditory areas modulate A1 neuronal activity via excitatory inputs.


Assuntos
Córtex Auditivo/fisiologia , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica , Animais , Temperatura Corporal/fisiologia , Gatos , Circulação Cerebrovascular/fisiologia , Temperatura Baixa , Corpo Caloso/fisiologia , Eletrodos Implantados , Eletroencefalografia , Fenômenos Eletrofisiológicos , Feminino , Lateralidade Funcional/fisiologia , Masculino , Microeletrodos , Neurônios/fisiologia
11.
Neurosci Lett ; 433(2): 129-34, 2008 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-18276073

RESUMO

Anatomical and imaging studies show ample evidence for auditory activation of the visual cortex following early onset of blindness in both humans and animal models. Anatomical studies in animal models of early blindness clearly show intermodal pathways through which auditory information can reach the primary visual cortex. There is clear evidence for intermodal corticocortical pathways linking auditory and visual cortex and also novel connections between the inferior colliculus and the visual thalamus. A recent publication [L.K. Laemle, N.L. Strominger, D.O. Carpenter, Cross-modal innervation of primary visual cortex by auditory fibers in congenitally anophthalmic mice, Neurosci. Lett. 396 (2006) 108-112] suggested the presence of a direct reciprocal connection between the inferior colliculus and the primary visual cortex (V1) in congenitally anophthalmic ZRDCT/An mice. This implies that this mutant mouse would be the only known vertebrate having a direct tectal connection with a primary sensory cortex. The presence of this peculiar pathway was reinvestigated in the ZRDCT/An mouse with highly sensitive neuronal tracers. We found the connections normally described in the ZRDCT/An mouse between: (i) the inferior colliculus and the dorsal lateral geniculate nucleus, (ii) V1 and the superior colliculus, (iii) the lateral posterior nucleus and V1 and between (iv) the inferior colliculus and the medial geniculate nucleus. We also show unambiguously that the auditory subcortical structures do not connect the primary visual cortex in the anophthalmic mouse. In particular, we find no evidence of a direct projection from the auditory mesencephalon to the cortex in this animal model of blindness.


Assuntos
Anoftalmia/patologia , Vias Auditivas/patologia , Mapeamento Encefálico , Tálamo/patologia , Córtex Visual/patologia , Animais , Vias Auditivas/fisiopatologia , Biotina/análogos & derivados , Biotina/metabolismo , Dextranos/metabolismo , Camundongos , Camundongos Mutantes Neurológicos
12.
Eur J Neurosci ; 26(8): 2334-48, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17953622

RESUMO

The occipital cortex, normally visual, can be activated by auditory or somatosensory tasks in the blind. This cross-modal compensation appears after early or late onset of blindness with differences in activation between early and late blind. This could support the hypothesis of a reorganization of sensory pathways in the early blind that does not occur in later onset blindness. Using immunohistochemistry of the c-Fos protein following a white noise stimulus and injections of the anterograde tracer dextran-biotin in the inferior colliculus, we studied how the occurrence of blindness influences cross-modal compensation in the mutant anophthalmic mouse strain and in C57BL/6 mice enucleated at birth. We observed, in mutant mice, immunolabeled nuclei in the visual thalamus - the dorsal lateral geniculate nucleus - in the primary visual area (V1) and a few labeled nuclei in the secondary visual area (V2). In enucleated mice, we observed auditory activity mainly in V2 but also sparsely in V1. No labeled cells could be found in the visual thalamus. Tracing studies confirmed the difference between anophthalmic and birth-enucleated mice: whereas the first group showed inferior colliculus projections entering both the dorsal lateral geniculate and the latero-posterior nuclei, in the second, auditory fibers were found only within the latero-posterior thalamic nucleus. None was found in controls with intact eyes. We suggest that the prenatal period of spontaneous retinal activity shapes the differences of the sensory reorganization in mice.


Assuntos
Anoftalmia/fisiopatologia , Percepção Auditiva/fisiologia , Cegueira/fisiopatologia , Vias Visuais/fisiopatologia , Estimulação Acústica/métodos , Análise de Variância , Animais , Animais Recém-Nascidos , Córtex Auditivo/metabolismo , Córtex Auditivo/patologia , Biotina/análogos & derivados , Biotina/metabolismo , Contagem de Células/métodos , Dextranos/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas Proto-Oncogênicas c-fos/metabolismo , Vias Visuais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...