Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 6(1): e16301, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21298006

RESUMO

BACKGROUND: sAPPα released after α secretase cleavage of Amyloid Precursor Protein (APP) has several functions including the stimulation of neurite outgrowth although detailed morphometric analysis has not been done. Two domains involved in this function have been described and are present in sAPPß released at the first step of amyloid peptide cleavage, raising the possibility that sAPPß could also stimulate neurite outgrowth. We investigated the morphological effects of sAPPα and sAPPß on primary neurons and identified a key signaling event required for the changes observed. METHODOLOGY/PRINCIPAL FINDINGS: Final concentrations of 50 to 150 nM bacterial recombinant sAPPα or sAPPß added to primary neuronal cultures after 1 day in vitro decreased cell adhesion 24 hours later and primary dendrite length 96 hours later. 150 nM sAPPα and sAPPß induced a similar increase of axon outgrowth, although this increase was already significant at 100 nM sAPPα. These morphological changes induced by sAPPs were also observed when added to differentiated neurons at 5 days in vitro. Real time PCR and immunocytochemistry showed that sAPPα and sAPPß stimulated Egr1 expression downstream of MAPK/ERK activation. Furthermore, in primary neurons from Egr1 -/- mice, sAPPs affected dendritic length but did not induce any increase of axon length. CONCLUSION/SIGNIFICANCE: sAPPα and sAPPß decrease cell adhesion and increase axon elongation. These morphological changes are similar to what has been observed in response to heparan sulfate. The sAPPα/sAPPß stimulated increase in axon growth requires Egr1 signaling. These data suggest that sAPPß is not deleterious per se. Since sAPPß and sAPPα are present in the embryonic brain, these two APP metabolites might play a role in axon outgrowth during development and in response to brain damage.


Assuntos
Precursor de Proteína beta-Amiloide/farmacologia , Axônios/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Transdução de Sinais/fisiologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Axônios/efeitos dos fármacos , Encéfalo/citologia , Adesão Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Camundongos Knockout , Neurônios/ultraestrutura
2.
Br J Pharmacol ; 147(7): 744-54, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16432504

RESUMO

Various histamine derivatives were investigated at the human H3 receptor (H3R) and H4 receptor (H4R) stably expressed in human embryonic kidney (HEK)-293 cells using [125I]iodoproxyfan and [3H]histamine binding, respectively. In Tris buffer, [3H]histamine binding to membranes of HEK(hH4R) cells was monophasic (K(D) of 3.8+/-0.8 nM). In phosphate buffer, the Hill coefficient was decreased (n(H) = 0.5+/-0.1) and a large fraction of the binding was converted into a low-affinity component (K(D) = 67+/-27 nM). The inhibition of [3H]histamine binding by two agonists, a protean agonist and five antagonists/inverse agonists confirms that the potency of many H3R ligands is retained or only slightly reduced at the H4R. Histamine derivatives substituted with methyl groups in alpha, beta or N(alpha) position of the side chain retained a nanomolar potency at the H3R, but their affinity was dramatically decreased at the H4R. With relative potencies to histamine of 282 and 0.13% at the H3R and H4R, respectively, (+/-)-alpha,beta-dimethylhistamine is a potent and selective H3R agonist. Chiral alpha-branched analogues exhibited a marked stereoselectivity at the H3R and H4R, the enantiomers with a configuration equivalent to L-histidine being preferred at both receptors. The methylsubstitution of the imidazole ring was also studied. The relative potency to histamine of 4-methylhistamine (4-MeHA) at the H4R (67%) was similar to that reported at H2 receptors but, owing to its high affinity at the H4R (Ki = 7.0+/-1.2 nM) and very low potency at H1- and H3-receptors, it can be considered as a potent and selective H4R agonist. On inhibition of forskolin-induced cAMP formation, all the compounds tested, including 4-MeHA, behaved as full agonists at both receptors. However, the maximal inhibition achieved at the H4R (approximately -30%) was much lower than at the H3R (approximately -80%). Thioperamide behaved as an inverse agonist at both receptors and increased cAMP formation with the same maximal effect (approximately +25%). In conclusion, although the pharmacological profiles of the human H3R and H4R overlap, the structure-activity relationships of histamine derivatives at both receptors strongly differ and lead to the identification of selective compounds.


Assuntos
Histamina/análogos & derivados , Histamina/farmacologia , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Histamínicos H3/efeitos dos fármacos , Receptores Histamínicos/efeitos dos fármacos , Ligação Competitiva/efeitos dos fármacos , Colforsina/farmacologia , AMP Cíclico/metabolismo , DNA Complementar/biossíntese , DNA Complementar/genética , Histamina/metabolismo , Antagonistas dos Receptores H2 da Histamina/metabolismo , Humanos , Imidazóis/metabolismo , Técnicas In Vitro , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Receptores Histamínicos H4 , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA