Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35081901

RESUMO

PURPOSE: To prepare solid lipid nanopaticles (SLNs) of Ketoprofen (KP) using microwave method. Ketoprofen (KP) is 2-(3-benzolphenyl) propionic acid with anti-inflammatory, analgesic and antipyretic property. The drug has short half-life of 120 mins. It belongs to BCS Class II drug. Gastric irritation is a major limitation for delivery because of acidic nature of the drug. Development of solid lipid nanoparticles with its transdermal drug delivery was the aim of present work. METHODS: Microwave-assisted microemulsion technique was used for the development of solid lipid nanoparticles. Stearic acid was used as lipid and tween 80 was used as surfactant. By varying the type of lipid and input energy watt, batches were formulated. SLNs were evaluated for zeta potential, drug entrapment, particle size and in-vitro drug release. Crystallinity behaviour was determined by differential scanning calorimetry and powder X-ray diffraction. Anti-inflammatory activity was evaluated for batch M4 of SLNs. The gel was prepared for M4 batch. It was evaluated for viscosity, pH, drug content, in-vitro and ex-vivo diffusion study. RESULTS: SLN were developed successfully. Based on the size, entrapment efficiency, stability and drug release, batch M4 was selected. SLNs showed 74.8% entrapment efficiency. Forty-fold improvement was observed in the solubility. The particle size was of 682.9 nm and average size of 1047 nm. PDI was 0.685. Zeta potential was -29.5 mV. M4 SLNs batch of gel showed burst release followed by a controlled release for 8 hrs in in-vitro drug release. CONCLUSION: SLNs were successfully prepared by Microwave-assisted microemulsion technique. SLNs with anti-inflammatory activity was successfully developed with its transdermal delivery.

2.
Recent Pat Drug Deliv Formul ; 12(2): 130-149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29485013

RESUMO

BACKGROUND: Nabumetone is biopharmaceutics classification system (BCS) class II drug, widely used in the treatment of osteoarthritis and rheumatoid arthritis. The most frequently reported adverse reactions for the drug involve disturbance in gastrointestinal tract, diarrhea, dyspepsia and abdominal pain. Microemulgel has advantages of microemulsion for improving solubility for hydrophobic drug. Patent literature had shown that the work for drug has been carried on spray chilling, enteric coated tablet, and topical formulation which gave an idea for present research work for the development of transdermal delivery. OBJECTIVE: The objective of the present research work was to optimize transdermal microemulgel delivery for Nabumetone for the treatment of arthritis. METHODS: Oil, surfactant and co-surfactant were selected based on solubility study of the drug. Gelling agents used were Carbopol 934 and HPMC K100M. Optimization was carried out using 32 factorial design. Characterization and evaluation were carried out for microemulsion and microemulsion based gel. RESULTS: Field emission-scanning electron microscopy (FE-SEM) study of the microemulsion revealed globules of 50-200 nm size. Zeta potential -9.50 mV indicated good stability of microemulsion. Globule size measured by dynamic light scattering (zetasizer) was 160nm. Design expert gave optimized batch as F7 which contain 0.2% w/w drug, 4.3% w/w liquid paraffin, 0.71% w/w tween 80, 0.35% w/w propylene glycol, 0.124% w/w Carbopol 934, 0.187% w/w HPMC K100M and 11.68% w/w water. In-vitro diffusion study for F7 batch showed 99.16±2.10 % drug release through egg membrane and 99.15±2.73% drug release in ex-vivo study. CONCLUSION: Nabumetone microemulgel exhibiting good in-vitro and ex-vivo controlled drug release was optimized.


Assuntos
Artrite/tratamento farmacológico , Butanonas/administração & dosagem , Butanonas/uso terapêutico , Administração Cutânea , Animais , Butanonas/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Emulsões , Géis/administração & dosagem , Géis/química , Nabumetona , Óvulo/metabolismo , Tamanho da Partícula , Ratos , Absorção Cutânea , Propriedades de Superfície , Tensoativos/administração & dosagem , Tensoativos/química
3.
Arch Pharm Res ; 34(3): 369-76, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21547667

RESUMO

Cardiovascular diseases and their treatment pose a great challenge. Many instances of cardiovascular disease occur in the early morning hours. Hence, the objective of this study was to develop a time-controlled release formulation of metoprolol succinate based on a pulsatile multiparticulate (pellets) drug delivery system. The formulation was intended to be administered in the evening at 22:00 hours to evaluate symptoms of cardiovascular disease that are experienced in the early morning hours (from 04:00 to 06:00). Drug layering followed by a swelling layer and finally by an insoluble coat application was done using a Sanmour fluid bed processor. Metoprolol succinate layered on sugar pellets (74% w/w) layered with 20% (w/w) ion doshion resin P-547 and coated with 15% (w/w) ethocel with the addition of 20% castor oil showed a lag time of 4 h and was then followed a sigmoidal release pattern with more than 95% drug having been released by the 10(th) h.


Assuntos
Antagonistas Adrenérgicos beta/administração & dosagem , Portadores de Fármacos/química , Metoprolol/análogos & derivados , Antagonistas Adrenérgicos beta/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Química Farmacêutica , Preparações de Ação Retardada , Cronofarmacoterapia , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Humanos , Metoprolol/administração & dosagem , Metoprolol/uso terapêutico , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...