Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Infect Dis ; : 107165, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977240

RESUMO

OBJECTIVE: The effects of sanitation and hygiene interventions on the gut microbiome and enteric pathogen burden are not well understood. We measured the association between free chlorine residue (FCR) levels in drinking water, microbiome composition, and stool enteric pathogens in infants and young children in Haiti. METHODS: FCR levels were measured in household drinking water and enteric pathogen burden was evaluated using multiplex RT-PCR of stool among 131 children from one month to five years of age living in Mirebalais, Haiti. Microbiome profiling was performed using metagenomic sequencing. RESULTS: Most individuals lived in households with undetectable FCR measured in the drinking water (112/131, 86%). Detection of enteric pathogen DNA in stool was common and did not correlate with household water FCR. The infant microbiome in households with detectable FCR demonstrated reduced richness (fewer total number of species, P=0.04 Kruskall-Wallis test) and less diversity by Inverse Simpson measures (P=0.05) than households with undetectable FCR. Infants in households with a detectable FCR were more likely to have abundant Bifidobacterium. Using in vitro susceptibility testing, we found that some Bifidobacterium species were resistant to chlorine. CONCLUSIONS: FCR in household drinking water did not correlate with enteric pathogen burden in our study.

2.
Microbiol Spectr ; : e0078524, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916318

RESUMO

Vibrio cholerae O1 causes the diarrheal disease cholera, and the small intestine is the site of active infection. During cholera, cholera toxin is secreted from V. cholerae and induces a massive fluid influx into the small intestine, which causes vomiting and diarrhea. Typically, V. cholerae genomes are sequenced from bacteria passed in stool, but rarely from vomit, a fluid that may more closely represents the site of active infection. We hypothesized that V. cholerae O1 population bottlenecks along the gastrointestinal tract would result in reduced genetic variation in stool compared to vomit. To test this, we sequenced V. cholerae genomes from 10 cholera patients with paired vomit and stool samples. Genetic diversity was low in both vomit and stool, consistent with a single infecting population rather than coinfection with divergent V. cholerae O1 lineages. The amount of single-nucleotide variation decreased from vomit to stool in four patients, increased in two, and remained unchanged in four. The variation in gene presence/absence decreased between vomit and stool in eight patients and increased in two. Pangenome analysis of assembled short-read sequencing demonstrated that the toxin-coregulated pilus operon more frequently contained deletions in genomes from vomit compared to stool. However, these deletions were not detected by PCR or long-read sequencing, indicating that interpreting gene presence or absence patterns from short-read data alone may be incomplete. Overall, we found that V. cholerae O1 isolated from stool is genetically similar to V. cholerae recovered from the upper intestinal tract. IMPORTANCE: Vibrio cholerae O1, the bacterium that causes cholera, is ingested in contaminated food or water and then colonizes the upper small intestine and is excreted in stool. Shed V. cholerae genomes from stool are usually studied, but V. cholerae isolated from vomit may be more representative of where V. cholerae colonizes in the upper intestinal epithelium. V. cholerae may experience bottlenecks, or large reductions in bacterial population sizes and genetic diversity, as it passes through the gut. Passage through the gut may select for distinct V. cholerae mutants that are adapted for survival and gut colonization. We did not find strong evidence for such adaptive mutations, and instead observed that passage through the gut results in modest reductions in V. cholerae genetic diversity, and only in some patients. These results fill a gap in our understanding of the V. cholerae life cycle, transmission, and evolution.

3.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370713

RESUMO

Vibrio cholerae O1 causes the diarrheal disease cholera, and the small intestine is the site of active infection. During cholera, cholera toxin is secreted from V. cholerae and induces a massive fluid influx into the small intestine, which causes vomiting and diarrhea. Typically, V. cholerae genomes are sequenced from bacteria passed in stool, but rarely from vomit, a fluid that may more closely represents the site of active infection. We hypothesized that the V. cholerae O1 population bottlenecks along the gastrointestinal tract would result in reduced genetic variation in stool compared to vomit. To test this, we sequenced V. cholerae genomes from ten cholera patients with paired vomit and stool samples. Genetic diversity was low in both vomit and stool, consistent with a single infecting population rather than co-infection with divergent V. cholerae O1 lineages. The number of single nucleotide variants decreased between vomit and stool in four patients, increased in two, and remained unchanged in four. The number of genes encoded in the V. cholerae genome decreased between vomit and stool in eight patients and increased in two. Pangenome analysis of assembled short-read sequencing demonstrated that the toxin-coregulated pilus operon more frequently contained deletions in genomes from vomit compared to stool. However, these deletions were not detected by PCR or long-read sequencing, indicating that interpreting gene presence or absence patterns from short-read data alone may be incomplete. Overall, we found that V. cholerae O1 isolated from stool is genetically similar to V. cholerae recovered from the upper intestinal tract.

5.
Elife ; 112022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35343438

RESUMO

Recent studies indicate that the human intestinal microbiota could impact the outcome of infection by Vibrio cholerae, the etiological agent of the diarrheal disease cholera. A commensal bacterium, Paracoccus aminovorans, was previously identified in high abundance in stool collected from individuals infected with V. cholerae when compared to stool from uninfected persons. However, if and how P. aminovorans interacts with V. cholerae has not been experimentally determined; moreover, whether any association between this bacterium alters the behaviors of V. cholerae to affect the disease outcome is unclear. Here, we show that P. aminovorans and V. cholerae together form dual-species biofilm structure at the air-liquid interface, with previously uncharacterized novel features. Importantly, the presence of P. aminovorans within the murine small intestine enhances V. cholerae colonization in the same niche that is dependent on the Vibrio exopolysaccharide and other major components of mature V. cholerae biofilm. These studies illustrate that multispecies biofilm formation is a plausible mechanism used by a gut microbe to increase the virulence of the pathogen, and this interaction may alter outcomes in enteric infections.


Assuntos
Cólera , Microbioma Gastrointestinal , Vibrio cholerae , Animais , Biofilmes , Cólera/microbiologia , Humanos , Camundongos , Virulência
6.
Cell Host Microbe ; 29(10): 1589-1598.e6, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34536346

RESUMO

Colorectal cancer is a major health concern worldwide. Growing evidence for the role of the gut microbiota in the initiation of CRC has sparked interest in approaches that target these microorganisms. However, little is known about the composition and role of the microbiota associated with precancerous polyps. Here, we found distinct microbial signatures between patients with and without polyps and between polyp subtypes using sequencing and culturing techniques. We found a correlation between Bacteroides fragilis recovered and the level of inflammatory cytokines in the mucosa adjacent to the polyp. Additional analysis revealed that B. fragilis from patients with polyps are bft-negative, activate NF-κB through Toll-like receptor 4, induce a pro-inflammatory response, and are enriched in genes associated with LPS biosynthesis. This study provides fundamental insight into the microbial microenvironment of the pre-neoplastic polyp by highlighting strain-specific genomic and proteomic differences, as well as more broad compositional differences in the microbiome.


Assuntos
Bacteroides fragilis/genética , Bacteroides fragilis/isolamento & purificação , Neoplasias Colorretais/microbiologia , Mucosa Intestinal/microbiologia , Idoso , Bacteroides fragilis/classificação , Bacteroides fragilis/fisiologia , Pólipos do Colo/imunologia , Pólipos do Colo/microbiologia , Pólipos do Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Citocinas/genética , Citocinas/imunologia , Feminino , Microbioma Gastrointestinal , Genoma Bacteriano , Genômica , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Filogenia , Simbiose
7.
Curr Protoc ; 1(8): e212, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34370396

RESUMO

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) provides a fast and easy means to identify culturable microorganisms to the species level. The sample preparation of microbial colonies for MALDI-TOF analysis requires a suitable protein extraction method. While standard MALDI-TOF sample preparation methods are well suited for the identification of and the discrimination between microorganisms belonging to different species, they are not disruptive enough to allow the discrimination between different strains of the same microorganism. More disruptive protein extraction methods lead to better discrimination power because they allow a better breakdown of bacterial cell membrane and a more efficient extraction of conserved microbial proteins that are specific to each species and strain. Here we describe how to extract proteins from single microbial colonies using formic acid and acetonitrile to disrupt cells prior to placing them on a target plate for MALDI-TOF MS analysis. Contrary to other sample preparation methods for MALDI-TOF MS, this approach allows the discrimination between different strains of microorganisms of the same species. Our approach also provides the groundwork data for building algorithms that allow the detection of specific microbial strains of interest, with a great potential for diagnostic applications in clinical settings. © 2021 Wiley Periodicals LLC. Basic Protocol: Protein extraction and MALDI-TOF bio-typing of phenotypically distinct bacterial species.


Assuntos
Bactérias , Manejo de Espécimes , Humanos , Lasers , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Infect Immun ; 89(9): e0021721, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34228490

RESUMO

Cholera is a diarrheal disease caused by Vibrio cholerae that continues to be a major public health concern in populations without access to safe water. IgG- and IgA-secreting memory B cells (MBC) targeting the V. cholerae O-specific polysaccharide (OSP) correlate with protection from infection in persons exposed to V. cholerae and may be a major determinant of long-term protection against cholera. Shanchol, a widely used oral cholera vaccine (OCV), stimulates OSP MBC responses in only some people after vaccination, and the gut microbiota is a possible determinant of variable immune responses observed after OCV. Using 16S rRNA sequencing of feces from the time of vaccination, we compared the gut microbiota among adults with and without MBC responses to OCV. Gut microbial diversity measures were not associated with MBC isotype or OSP-specific responses, but individuals with a higher abundance of Clostridiales and lower abundance of Enterobacterales were more likely to develop an MBC response. We applied protein-normalized fecal supernatants of high and low MBC responders to THP-1-derived human macrophages to investigate the effect of microbial factors at the time of vaccination. Feces from individuals with higher MBC responses induced significantly different IL-1ß and IL-6 levels than individuals with lower responses, indicating that the gut microbiota at the time of vaccination may "prime" the mucosal immune response to vaccine antigens. Our results suggest the gut microbiota could impact immune responses to OCVs, and further study of microbial metabolites as potential vaccine adjuvants is warranted.


Assuntos
Linfócitos B/imunologia , Vacinas contra Cólera/imunologia , Cólera/imunologia , Cólera/microbiologia , Microbioma Gastrointestinal , Memória Imunológica , Vibrio cholerae/imunologia , Administração Oral , Adolescente , Adulto , Especificidade de Anticorpos/imunologia , Linfócitos B/metabolismo , Cólera/prevenção & controle , Vacinas contra Cólera/administração & dosagem , Feminino , Interações Hospedeiro-Patógeno/imunologia , Humanos , Masculino , Interações Microbianas , Vacinação , Adulto Jovem
9.
ACS Infect Dis ; 7(5): 1010-1019, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33844507

RESUMO

Vibrio cholerae is the causative agent of cholera, a diarrheal disease that kills tens of thousands of people each year. Cholera is transmitted primarily by the ingestion of drinking water contaminated with fecal matter, and a safe water supply remains out of reach in many areas of the world. In this Review, we discuss host and environmental factors that impact the susceptibility to V. cholerae infection and the severity of disease.


Assuntos
Cólera , Vibrio cholerae , Humanos
10.
Gut Microbes ; 12(1): 1-16, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32816619

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver injury and liver transplantation in Western countries. The pathogenesis of NAFLD includes overnutrition-associated metabolic syndrome or the improper consumption of dietary macro- and micro-nutrients that either support or prevent disease development. This altered nutrient landscape has been linked to shifts within the gut microbiota which can exacerbate liver pathology and the progression of NAFLD. Treatment goals for NAFLD target lifestyle and dietary modifications that restrict calories and adjust macronutrient content. It is not well understood how different macronutrients alter the microbiota and whether the diet-educated microbiota contribute to the resolution of disease. We fed mice a diet high in fat, cholesterol and fructose for 6 weeks and then in two different arms of the study, intervened with either a diet high in saturated and polyunsaturated fats and fiber or low in fats and fiber. In a second set of experiments, we performed microbiota transplants using cecal contents from mice fed one of the intervention diets to assess whether the diet-educated microbiota could impact clinical outcomes in mice fed a NAFLD-inducing diet. Pathology, steatosis, ALT/AST levels, and liver cytokine levels were measured as primary outcomes. We found that despite different microbiota compositions, both of the intervention diets reversed the progression of NAFLD and dampened inflammation. In contrast, transplantation of cecal contents from the intervention diet-fed mice to mice receiving a NAFLD-inducing diet was unable to prevent disease progression, and, in some cases, worsened disease. These data underscore the importance of dietary modifications to treat NAFLD and caution against the use of microbiota transplantation in the absence of dietary and lifestyle modifications.


Assuntos
Dieta com Restrição de Gorduras , Dieta Paleolítica , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Citocinas/metabolismo , Fibras na Dieta/administração & dosagem , Fezes/microbiologia , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/terapia
11.
Cancer Prev Res (Phila) ; 13(1): 25-40, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31771941

RESUMO

Tightly regulated immune responses must occur in the intestine to avoid unwanted inflammation, which may cause chronic sequela leading to diseases such as colorectal cancer. Toll-like receptors play an important role in preventing aberrant immune responses in the intestine by sensing endogenous commensal microbiota and delivering important regulatory signals to the tissue. However, the role that specific innate receptors may play in the development of chronic inflammation and their impact on the composition of the colonic microbiota is not well understood. Using a model of inflammation-induced colorectal cancer, we found that Lactobacillus species are lost more quickly in wild-type (WT) mice than TLR6-deficient mice resulting in overall differences in bacterial composition. Despite the longer retention of Lactobacillus, the TLR6-deficient mice presented with more tumors and a worse overall outcome. Restoration of the lost Lactobacillus species suppressed inflammation, reduced tumor number, and prevented change in the abundance of Proteobacteria only when given to WT mice, indicating the effect of these Lactobacillus are TLR6 dependent. We found that the TLR6-dependent effects of Lactobacillus could be dissociated from one another via the involvement of IL10, which was necessary to dampen the inflammatory microenvironment, but had no effect on bacterial composition. Altogether, these data suggest that innate immune signals can shape the composition of the microbiota under chronic inflammatory conditions, bias the cytokine milieu of the tissue microenvironment, and influence the response to microbiota-associated therapies.


Assuntos
Colite/imunologia , Neoplasias Colorretais/imunologia , Microbioma Gastrointestinal/imunologia , Neoplasias Experimentais/imunologia , Receptor 6 Toll-Like/deficiência , Animais , Azoximetano/toxicidade , Colite/induzido quimicamente , Colite/genética , Colite/microbiologia , Colo/imunologia , Colo/microbiologia , Colo/patologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Sulfato de Dextrana/toxicidade , Feminino , Humanos , Imunidade Inata , Interleucina-10/administração & dosagem , Interleucina-10/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Lactobacillus/imunologia , Camundongos , Camundongos Knockout , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/genética , Neoplasias Experimentais/microbiologia , Probióticos/administração & dosagem , Proteobactérias/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 6 Toll-Like/genética
12.
J Immunol ; 201(1): 230-242, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29794015

RESUMO

There is cross-talk between the intestinal epithelium and the microbiota that functions to maintain a tightly regulated microenvironment and prevent chronic inflammation. This communication is partly mediated through the recognition of bacterial proteins by host-encoded innate receptors, such as TLRs. However, studies examining the role of TLR signaling on colonic homeostasis have given variable and conflicting results. Despite its critical role in mediating immunity during enteric infection of the small intestine, TLR1-mediated recognition of microbiota-derived ligands and their influence on colonic homeostasis has not been well studied. In this study, we demonstrate that defective TLR1 recognition of the microbiome by epithelial cells results in disruption of crypt homeostasis specifically within the secretory cell compartment, including a defect in the mucus layer, ectopic Paneth cells in the colon, and an increase in the number of rapidly dividing cells at the base of the crypt. As a consequence of the perturbed epithelial barrier, we found an increase in mucosal-associated and translocated commensal bacteria and chronic low-grade inflammation characterized by an increase in lineage-negative Sca1+Thy1hi innate lymphoid-like cells that exacerbate inflammation and worsen outcomes in a model of colonic injury and repair. Our findings demonstrate that sensing of the microbiota by TLR1 may provide key signals that regulate the colonic epithelium, thereby limiting inflammation through the prevention of bacterial attachment to the mucosa and exposure to the underlying immune system.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal/imunologia , Inflamação/prevenção & controle , Mucosa Intestinal/imunologia , Celulas de Paneth/patologia , Receptor 1 Toll-Like/imunologia , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Aderência Bacteriana/fisiologia , Colo/citologia , Colo/imunologia , Colo/patologia , Transplante de Microbiota Fecal , Inflamação/patologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Intestino Delgado/microbiologia , Intestino Delgado/patologia , Camundongos , Camundongos Knockout , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA