Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38920472

RESUMO

This work analyzes the effect of wall geometry when a reaction-diffusion system is confined to a narrow channel. In particular, we study the entropy production density in the reversible Gray-Scott system. Using an effective diffusion equation that considers modifications by the channel characteristics, we find that the entropy density changes its value but not its qualitative behavior, which helps explore the structure-formation space.

2.
Phys Rev E ; 107(3-1): 034801, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37072965

RESUMO

We study the transport properties of diffusing particles restricted to confined regions on curved surfaces. We relate particle mobility to the curvature of the surface where they diffuse and the constraint due to confinement. Applying the Fick-Jacobs procedure to diffusion in curved manifolds shows that the local diffusion coefficient is related to average geometric quantities such as constriction and tortuosity. Macroscopic experiments can record such quantities through an average surface diffusion coefficient. We test the accuracy of our theoretical predictions of the effective diffusion coefficient through finite-element numerical solutions of the Laplace-Beltrami diffusion equation. We discuss how this work contributes to understanding the link between particle trajectories and the mean-square displacement.

3.
Entropy (Basel) ; 23(2)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562772

RESUMO

In kinetic exchange models, agents make transactions based on well-established microscopic rules that give rise to macroscopic variables in analogy to statistical physics. These models have been applied to study processes such as income and wealth distribution, economic inequality sources, economic growth, etc., recovering well-known concepts in the economic literature. In this work, we apply ensemble formalism to a geometric agents model to study the effect of saving propensity in a system with money, credit, and debt. We calculate the partition function to obtain the total money of the system, with which we give an interpretation of the economic temperature in terms of the different payment methods available to the agents. We observe an interplay between the fraction of money that agents can save and their maximum debt. The system's entropy increases as a function of the saved proportion, and increases even more when there is debt.

4.
J Chem Phys ; 148(21): 214106, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29884048

RESUMO

A theoretical framework based on using the Frenet-Serret moving frame as the coordinate system to study the diffusion of bounded Brownian point-like particles has been recently developed [L. Dagdug et al., J. Chem. Phys. 145, 074105 (2016)]. Here, this formalism is extended to a variable cross section tube with a helix with constant torsion and curvature as a mid-curve. For the sake of clarity, we will divide this study into two parts: one for a helical tube with a constant cross section and another for a helical tube with a variable cross section. For helical tubes with a constant cross section, two regimes need to be considered for systematic calculations. On the one hand, in the limit when the curvature is smaller than the inverse of the helical tube radius R, the resulting coefficient is that obtained by Ogawa. On the other hand, we also considered the limit when torsion is small compared to R, and to the best of our knowledge, the expression thus obtained has not been previously reported in the literature. In the more general case of helical tubes with a variable cross section, we also had to limit ourselves to small variations of R. In this case, we obtained one of the main contributions of this work, which is an expression for the diffusivity dependent on R', torsion, and curvature that consistently reduces to the well-known expressions within the corresponding limits.

5.
J Phys Condens Matter ; 30(19): 194001, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29583127

RESUMO

Axial diffusion in channels and tubes of smoothly-varying geometry can be approximately described as one-dimensional diffusion in the entropy potential with a position-dependent effective diffusion coefficient, by means of the modified Fick-Jacobs equation. In this work, we derive analytical expressions for the position-dependent effective diffusivity for two-dimensional asymmetric varying-width channels, and for three-dimensional curved midline tubes, formed by straight walls. To this end, we use a recently developed theoretical framework using the Frenet-Serret moving frame as the coordinate system (2016 J. Chem. Phys. 145 074105). For narrow tubes and channels, an effective one-dimensional description reducing the diffusion equation to a Fick-Jacobs-like equation in general coordinates is used. From this last equation, one can calculate the effective diffusion coefficient applying Neumann boundary conditions.

6.
J Chem Phys ; 145(7): 074105, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27544085

RESUMO

We developed a theoretical framework to study the diffusion of Brownian point-like particles in bounded geometries in two and three dimensions. We use the Frenet-Serret moving frame as the coordinate system. For narrow tubes and channels, we use an effective one-dimensional description reducing the diffusion equation to a Fick-Jacobs-like equation. From this last equation, we can calculate the effective diffusion coefficient applying Neumann boundary conditions. On one hand, for channels with a straight axis our theoretical approximation for the effective coefficient does coincide with the reported in the literature [D. Reguera and J. M. Rubí, Phys. Rev. E 64, 061106 (2001) and P. Kalinay and J. K. Percus, ibid. 74, 041203 (2006)]. On the other hand, for tubes with a straight axis and circular cross-section our analytical expression does not coincide with the reported by Rubí and Reguera and by Kalinay and Percus, although it is practically identical.

7.
J Chem Phys ; 142(6): 064105, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25681885

RESUMO

A covariant description of diffusion of point-size Brownian particles in bounded geometries is presented. To this end, we provide a formal theoretical framework using differential geometry. We propose a coordinate transformation to map the boundaries of a general two-dimensional channel into a straight channel in a non-Cartesian geometry. The new shape of the boundaries naturally suggests a reduction to one dimension. As a consequence of this coordinate transformation, the Fick equation with boundary conditions transforms as a generalized Fick-Jacobs-like equation, in which the leading-order term is equivalent to the Fick-Jacobs approximation. The expression for the effective diffusion coefficient derived here depends on the position and the derivatives of the channel's width and centerline. Finally, we validate our analytic predictions for the effective diffusion coefficients for two periodic channels.

8.
J Chem Phys ; 139(21): 214115, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24320372

RESUMO

In this work, we derive a general effective diffusion coefficient to describe the two-dimensional (2D) diffusion in a narrow and smoothly asymmetric channel of varying width, embedded on a curved surface, in the simple diffusion of non-interacting, point-like particles under no external field. To this end, we extend the generalization of the Kalinay-Percus' projection method [J. Chem. Phys. 122, 204701 (2005); Phys. Rev. E 74, 041203 (2006)] for the asymmetric channels introduced in [L. Dagdug and I. Pineda, J. Chem. Phys. 137, 024107 (2012)], to project the anisotropic two-dimensional diffusion equation on a curved manifold, into an effective one-dimensional generalized Fick-Jacobs equation that is modified according to the curvature of the surface. For such purpose we construct the whole expansion, writing the marginal concentration as a perturbation series. The lowest order in the perturbation parameter, which corresponds to the Fick-Jacobs equation, contains an additional term that accounts for the curvature of the surface. We explicitly obtain the first-order correction for the invariant effective concentration, which is defined as the correct marginal concentration in one variable, and we obtain the first approximation to the effective diffusion coefficient analogous to Bradley's coefficient [Phys. Rev. E 80, 061142 (2009)] as a function of the metric elements of the surface. In a straightforward manner, we study the perturbation series up to the nth order, and derive the full effective diffusion coefficient for two-dimensional diffusion in a narrow asymmetric channel, with modifications according to the metric terms. This expression is given as D(ξ)=D(0)/w'(ξ)√(g(1)/g(2)){arctan[√(g(2)/g(1))(y(0)'(ξ)+w'(ξ)/2)]-arctan[√(g(2)/g(1))(y(0)'(ξ)-w'(ξ)/2)]}, which is the main result of our work. Finally, we present two examples of symmetric surfaces, namely, the sphere and the cylinder, and we study certain specific channel configurations on these surfaces.

9.
Artigo em Inglês | MEDLINE | ID: mdl-23767501

RESUMO

We report fully relativistic molecular-dynamics simulations that verify the appearance of thermal equilibrium of a classical gas inside a uniformly accelerated container. The numerical experiments confirm that the local momentum distribution in this system is very well approximated by the Jüttner function-originally derived for a flat spacetime-via the Tolman-Ehrenfest effect. Moreover, it is shown that when the acceleration or the container size is large enough, the global momentum distribution can be described by the so-called modified Jüttner function, which was initially proposed as an alternative to the Jüttner function.


Assuntos
Transferência de Energia , Gases/química , Modelos Químicos , Modelos Moleculares , Modelos Estatísticos , Teoria Quântica , Termodinâmica , Simulação por Computador
10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(2 Pt 1): 021126, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20365549

RESUMO

The relativistic equilibrium velocity distribution plays a key role in describing several high-energy and astrophysical effects. Recently, computer simulations favored Jüttner's as the relativistic generalization of Maxwell's distribution for d=1,2,3 spatial dimensions and pointed to an invariant temperature. In this work, we argue an invariant temperature naturally follows from manifest covariance. We present a derivation of the manifestly covariant Jüttner's distribution and equipartition theorem. The standard procedure to get the equilibrium distribution as a solution of the relativistic Boltzmann's equation, which holds for dilute gases, is here adopted. However, contrary to previous analysis, we use Cartesian coordinates in d+1 momentum space, with d spatial components. The use of the multiplication theorem of Bessel functions turns crucial to regain the known invariant form of Jüttner's distribution. Since equilibrium kinetic-theory results should agree with thermodynamics in the comoving frame to the gas the covariant pseudonorm of a vector entering the distribution can be identified with the reciprocal of temperature in such comoving frame. Then by combining the covariant statistical moments of Jüttner's distribution a form of the equipartition theorem is advanced which also accommodates the invariant comoving temperature and it contains, as a particular case, a previous not manifestly covariant form.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(2 Pt 1): 021201, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17930026

RESUMO

A covariant Fokker-Planck-type equation for a simple gas and an equation for the Brownian motion are derived from a relativistic kinetic theory based on the Boltzmann equation. For the simple gas the dynamic friction four-vector and the diffusion tensor are identified and written in terms of integrals which take into account the collision processes. In the case of Brownian motion, the Brownian particles are considered as nonrelativistic, whereas the background gas behaves as a relativistic gas. A general expression for the semirelativistic viscous friction coefficient is obtained and the particular case of constant differential cross section is analyzed for which the nonrelativistic and ultrarelativistic limiting cases are calculated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA