Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Oncol ; 32(2): 200807, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38745749

RESUMO

V937 is an investigational, genetically unmodified Kuykendall strain of coxsackievirus A21, which has been evaluated in the clinic for advanced solid tumor malignancies. V937 specifically infects and lyses tumor cells that overexpress intercellular adhesion molecule-1 (ICAM-1). Intratumoral V937 as a monotherapy and in combination with anti-PD-1 antibody pembrolizumab has shown clinical response in patients with metastatic melanoma, which overexpresses ICAM-1. Here, we investigate in preclinical studies the potential bidirectional cross-talk between hepatocellular carcinomas (HCC) or colorectal carcinomas (CRC) and immune cells when treated with V937 alone or in combination with pembrolizumab. We show that while V937 treatment of tumor cell lines or organoids or peripheral blood mononuclear cells (PBMCs) alone induced a minimal immunological response, V937 treatment of non-contact co-cultures of tumor cell lines or CRC organoids with PBMCs led to robust production of proinflammatory cytokines and immune cell activation. In addition, both recombinant interferon-gamma and pembrolizumab increased ICAM-1 on tumor cell lines or organoids and, in turn, amplified V937-mediated oncolysis and immunogenicity. These findings provide critical mechanistic insights on the cross-talk between V937-mediated oncolysis and immune responses, demonstrating the therapeutic potential of V937 in combination with PD-1 blockade to treat immunologically quiescent cancers.

2.
Front Oncol ; 12: 1016307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531014

RESUMO

Introduction: Colorectal cancer (CRC) is largely refractory to currently available immunotherapies such as blockade of programmed cell death protein-1 (PD-1). Results: In this study, we identified SPATA2 and its protein partner CYLD as novel regulators of CXC-ligand 10 (CXCL10), a T-cell-attractant chemokine, in CRC. By specifically deleting SPATA2 and CYLD in human and mouse CRC cell lines, we showed that these two proteins inhibit STAT1 accumulation and activation and subsequently CXCL10 expression in tumor cells. At steady-state, STAT1 is highly ubiquitinated in a SPATA2/CYLD-dependent manner. Finally, we demonstrated that tumor-specific deletion of SPATA2 and CYLD enhances anti-PD-1 response in vivo. Discussion: Our data suggest that SPATA2 and CYLD represent two potential novel targets for treatment of immune-excluded, PD-1-resistant tumors.

3.
Front Immunol ; 12: 752348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912335

RESUMO

Programmed cell death-1 (PD-1) blockade has a profound effect on the ability of the immune system to eliminate tumors, but many questions remain about the cell types involved and the underlying mechanisms of immune activation. To shed some light on this, the cellular and molecular events following inhibition of PD-1 signaling was investigated in the MC-38 colon carcinoma model using constitutive (PD-1 KO) and conditional (PD1cKO) mice and in wild-type mice treated with PD-1 antibody. The impact on both tumor growth and the development of tumor immunity was assessed. In the PD-1cKO mice, a complete deletion of Pdcd1 in tumor-infiltrating T cells (TILs) after tamoxifen treatment led to the inhibition of tumor growth of both small and large tumors. Extensive immune phenotypic analysis of the TILs by flow and mass cytometry identified 20-different T cell subsets of which specifically 5-CD8 positive ones expanded in all three models after PD-1 blockade. All five subsets expressed granzyme B and interferon gamma (IFNγ). Gene expression analysis of the tumor further supported the phenotypic analysis in both PD-1cKO- and PD-1 Ab-treated mice and showed an upregulation of pathways related to CD4 and CD8 T-cell activation, enhanced signaling through costimulatory molecules and IFNγ, and non-T-cell processes. Altogether, using PD-1cKO mice, we define the intrinsic nature of PD-1 suppression of CD8 T-cell responses in tumor immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Experimentais/imunologia , Receptor de Morte Celular Programada 1/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Feminino , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Morte Celular Programada 1/deficiência
4.
J Immunother Cancer ; 8(2)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33127658

RESUMO

BACKGROUND: Programmed cell death protein 1 (PD-1) and CTLA4 combination blockade enhances clinical efficacy in melanoma compared with targeting either checkpoint alone; however, clinical response improvement is coupled with increased risk of developing immune-related adverse events (irAE). Delineating the mechanisms of checkpoint blockade-mediated irAE has been hampered by the lack of animal models that replicate these clinical events. METHODS: We have developed a mouse model of checkpoint blockade-mediated enterocolitis via prolonged administration of an Fc-competent anti-CTLA4 antibody. RESULTS: Sustained treatment with Fc-effector, but not Fc-mutant or Fc-null, anti-CTLA4 antagonist for 7 weeks resulted in enterocolitis. Moreover, combining Fc-null or Fc-mutant CTLA4 antagonists with PD-1 blockade results in potent antitumor combination efficacy indicating that Fc-effector function is not required for combination benefit. CONCLUSION: These data suggest that using CTLA4 antagonists with no Fc-effector function can mitigate gut inflammation associated with anti-CTLA4 antibody therapy yet retain potent antitumor activity in combination with PD-1 blockade.


Assuntos
Antígeno CTLA-4/antagonistas & inibidores , Inflamação/fisiopatologia , Receptor de Morte Celular Programada 1/metabolismo , Animais , Humanos , Camundongos
5.
J Pharmacol Toxicol Methods ; 103: 106872, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32387500

RESUMO

Undesired immune responses against protein therapeutics may adversely affect the pharmacokinetics, efficacy, and safety of the product. The presence of anti-drug-antibodies (ADA) has been the key determinant of immunogenic responses. Here we describe the use of a capillary electrophoresis platform for the identification of ADAs against several experimental camelid VHH biologics (Nanobodies®). Hereafter, we refer to this assay as WESADA. We modified the Wes platform by ProteinSimple to screen serum samples for ADA against covalently linked multi-modular Nanobodies and compared it to standard ADA methodologies. We were able to identify ADA positive samples and determine which individual VHH module in a multivalent Nanobody construct stimulated the predominant ADA response. WESADA requires denaturation of the experimental immobilized drug, which could affect recognition of the immunogenic epitope and alter ADA signal. To address this issue, we demonstrated that signal can be immunodepleted by pre-incubation of serum samples with native Nanobody. This capillary electrophoresis based approach allows for rapid analysis without the need for individually tailored assay optimization or reagent labeling, while consuming small amounts of sample and drug. It also allows for the simultaneous ADA analysis of multiple targets of different molecular size in the same experimental sample. WESADA is not intended to replace traditional ADA assay formats, but it facilitates the expedient immunogenic assessment of a large number of experimental drug candidates in the early developmental space.


Assuntos
Produtos Biológicos/imunologia , Produtos Biológicos/uso terapêutico , Monitoramento de Medicamentos/métodos , Eletroforese Capilar/métodos , Animais , Anticorpos Monoclonais , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
6.
J Clin Invest ; 128(2): 644-654, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29337311

RESUMO

Blockade of the checkpoint inhibitor programmed death 1 (PD1) has demonstrated remarkable success in the clinic for the treatment of cancer; however, a majority of tumors are resistant to anti-PD1 monotherapy. Numerous ongoing clinical combination therapy studies will likely reveal additional therapeutics that complement anti-PD1 blockade. Recent studies found that immunogenic cell death (ICD) improves T cell responses against different tumors, thus indicating that ICD may further augment antitumor immunity elicited by anti-PD1. Here, we observed antitumor activity following combinatorial therapy with anti-PD1 Ab and the cyclin-dependent kinase inhibitor dinaciclib in immunocompetent mouse tumor models. Dinaciclib induced a type I IFN gene signature within the tumor, leading us to hypothesize that dinaciclib potentiates the effects of anti-PD1 by eliciting ICD. Indeed, tumor cells treated with dinaciclib showed the hallmarks of ICD including surface calreticulin expression and release of high mobility group box 1 (HMGB1) and ATP. Mice treated with both anti-PD1 and dinaciclib showed increased T cell infiltration and DC activation within the tumor, indicating that this combination improves the overall quality of the immune response generated. These findings identify a potential mechanism for the observed benefit of combining dinaciclib and anti-PD1, in which dinaciclib induces ICD, thereby converting the tumor cell into an endogenous vaccine and boosting the effects of anti-PD1.


Assuntos
Adenocarcinoma/tratamento farmacológico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Compostos de Piridínio/farmacologia , Trifosfato de Adenosina/química , Animais , Anticorpos Monoclonais/farmacologia , Apoptose , Linfócitos T CD8-Positivos/citologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Óxidos N-Cíclicos , Citocinas/metabolismo , Células Dendríticas/citologia , Sinergismo Farmacológico , Feminino , Proteína HMGB1/metabolismo , Sistema Imunitário/efeitos dos fármacos , Imunoterapia , Indolizinas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante de Neoplasias , Fagocitose , Receptor de Morte Celular Programada 1/metabolismo , Inibidores de Proteínas Quinases/farmacologia
7.
J Immunol ; 181(11): 7891-901, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19017979

RESUMO

IL-12 is essential for protective T cell-mediated immunity against Salmonella infection. To characterize the role of the related cytokine IL-23, wild-type (WT) C57BL/6 and p19(-/-) mice were infected systemically with an attenuated strain of Salmonella enterica serovar Enteritidis (S. Enteritidis). IL-23-deficient mice controlled infection with S. Enteritidis similarly as WT mice. Similar IFN-gamma production as compared with WT mice, but defective IL-17A and IL-22 production was found in the absence of IL-23. Nevertheless, although IL-23 is required for T cell-dependent cytokine responses, IL-23 is dispensable for protection against S. Enteritidis when IL-12 is present. To analyze the role of IL-23 in the absence of IL-12, low doses of S. Enteritidis were administered to p35(-/-) mice (lacking IL-12), p35/19(-/-) mice (lacking IL-12 and IL-23), p35/40(-/-) mice (lacking IL-12, IL-23, and homodimeric IL-12p40), or p35/IL-17A(-/-) mice (lacking IL-12 and IL-17A). We found survival of p35(-/-) and p35/IL-17A(-/-) mice, whereas p35/19(-/-) and p35/40(-/-) mice died within 3-6 wk and developed liver necrosis. This indicates that IL-23, but not homodimeric IL-12p40, is required for protection, which, surprisingly, is independent of IL-17A. Moreover, protection was associated with IL-22, but not IL-17F or IL-21 expression or with neutrophil recruitment. Finally, anti-IL-22 treatment of S. Enteritidis-infected p35(-/-) mice resulted in liver necrosis, indicating a central role of IL-22 in hepatocyte protection during salmonellosis. In conclusion, IL-23-dependent IL-22, but not IL-17 production is associated with protection against systemic infection with S. Enteritidis in the absence of IL-12.


Assuntos
Subunidade p40 da Interleucina-12/imunologia , Interleucina-17/imunologia , Interleucina-23/imunologia , Interleucinas/imunologia , Infecções por Salmonella/imunologia , Salmonella enteritidis/imunologia , Animais , Feminino , Hepatócitos/imunologia , Interferon gama/genética , Interferon gama/imunologia , Subunidade p40 da Interleucina-12/genética , Interleucina-17/genética , Interleucina-23/genética , Interleucinas/genética , Fígado/imunologia , Camundongos , Camundongos Knockout , Necrose/genética , Necrose/imunologia , Neutrófilos/imunologia , Infecções por Salmonella/genética , Interleucina 22
8.
J Immunol ; 179(4): 2551-5, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17675517

RESUMO

IL-33 (IL-1F11) is a recently described member of the IL-1 family of cytokines that stimulates the generation of cells, cytokines, and Igs characteristic of a type 2 immune response. IL-33 mediates signal transduction through ST2, a receptor expressed on Th2 and mast cells. In this study, we demonstrate that IL-33 and ST2 form a complex with IL-1R accessory protein (IL-1RAcP), a signaling receptor subunit that is also a member of the IL-1R complex. Additionally, IL-1RAcP is required for IL-33-induced in vivo effects, and IL-33-mediated signal transduction can be inhibited by dominant-negative IL-1RAcP. The implications of this shared usage of IL-1RAcP by IL-1(alpha and beta) and IL-33 are discussed.


Assuntos
Proteína Acessória do Receptor de Interleucina-1/imunologia , Interleucinas/imunologia , Mastócitos/imunologia , Proteínas de Membrana/imunologia , Complexos Multiproteicos/imunologia , Transdução de Sinais/imunologia , Células Th2/imunologia , Animais , Regulação da Expressão Gênica/imunologia , Genes Dominantes/imunologia , Proteína Acessória do Receptor de Interleucina-1/deficiência , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-33 , Interleucinas/genética , Mastócitos/citologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Subunidades Proteicas/genética , Subunidades Proteicas/imunologia , Receptores de Interleucina , Transdução de Sinais/genética , Células Th2/citologia
9.
Infect Immun ; 74(11): 6092-9, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16923792

RESUMO

Interleukin-23 (IL-23), a member of the IL-12 family, is a heterodimeric cytokine that is composed of the p40 subunit of IL-12 plus a unique p19 subunit. IL-23 is critical for autoimmune inflammation, in part due to its stimulation of the proinflammatory cytokine IL-17A. It is less clear, however, if IL-23 is required during the immune response to pathogens. We examined the role of IL-23 during Mycobacterium bovis BCG infection. We found that IL-23 reduces the bacterial burden and promotes granuloma formation when IL-12 is absent. However, IL-23 does not contribute substantially to host resistance when IL-12 is present, as the ability to control bacterial growth and form granulomata is not affected in IL-23p19-deficient mice and mice treated with a specific anti-IL-23p19 antibody. IL-23p19-deficient mice are also able to mount an effective memory response to secondary infection with BCG. While IL-23p19-deficient mice do not produce IL-17A, this cytokine is not necessary for effective control of infection, and antibody blocking of IL-17A in both wild-type and IL-12-deficient mice also has little effect on the bacterial burden. These data suggest that IL-23 by itself does not play an essential role in the protective immune response to BCG infection; however, the presence of IL-23 can partially compensate for the absence of IL-12. Furthermore, neutralization of IL-23 or IL-17A does not increase susceptibility to mycobacterial BCG infection.


Assuntos
Interleucina-23/antagonistas & inibidores , Interleucina-23/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Tuberculose/imunologia , Animais , Feminino , Granuloma/genética , Granuloma/imunologia , Interleucina-12/biossíntese , Interleucina-12/deficiência , Interleucina-12/genética , Interleucina-23/deficiência , Interleucina-23/fisiologia , Subunidade p19 da Interleucina-23/deficiência , Subunidade p19 da Interleucina-23/genética , Subunidade p19 da Interleucina-23/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium bovis/imunologia , Receptores de Interleucina/biossíntese , Receptores de Interleucina/genética , Tuberculose/genética
10.
J Immunol ; 176(8): 4914-22, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16585587

RESUMO

Host immunity to Mycobacterium tuberculosis is mediated by T cells that recognize and activate infected macrophages to control intracellular bacterial replication. The early appearance of T cells in the lungs of infected mice correlates with greater resistance to infection. However, it is unknown whether the trafficking of T cells to the lung following infection is dependent upon the expression of certain adhesion molecules. To address this question, we infected knockout (KO) mice that have defective expression of CD11a, CD11b, CD18, CD62, CD103, or beta7. We found that the integrins CD11a and CD18 are absolutely required for host resistance following infection with aerosolized M. tuberculosis. Although Ag-specific T cells are generated following infection of CD11a KO mice, T cell priming is delayed, T cell trafficking to the lung is impaired, and fewer ESAT6-specific CD4+ T cells are found in the lungs of CD11a KO mice compared with control mice. Thus, LFA-1 (CD11a/CD18) plays an essential role in immunity to M. tuberculosis infection.


Assuntos
Antígeno-1 Associado à Função Linfocitária/metabolismo , Tuberculose Pulmonar/imunologia , Animais , Antígeno CD11a/genética , Antígeno CD11a/metabolismo , Antígenos CD18/genética , Antígenos CD18/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Feminino , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
11.
Curr Opin Infect Dis ; 19(3): 245-52, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16645485

RESUMO

PURPOSE OF REVIEW: Interleukin-12 is a heterodimeric cytokine and an important mediator of the cellular immune response. The recent discovery of the novel cytokine interleukin-23 has led to a re-evaluation of interleukin-12 biology, as both cytokines use a common p40 subunit. This review discusses understanding of what distinguishes these related cytokines and the infection risks associated with targeting these cytokine pathways during treatment of inflammatory diseases. RECENT FINDINGS: Recent work has shown that interleukin-23 stimulates the development of a distinct subset of effector T cells that produce interleukin-17A. These interleukin-17A-producing cells are critical mediators of the inflammatory response in several mouse models of autoimmunity. Although it is well established that interleukin-12 is a critical mediator of host defense, the role of the interleukin-23/interleukin-17A axis during infections has only recently been evaluated. SUMMARY: Interleukin-12 and interleukin-23 have distinct roles in mediating host defense and autoimmune inflammation. Although targeting interleukin-12 and interleukin-23 simultaneously against the common p40 subunit is efficacious in clinical trials for human autoimmune diseases, targeting of interleukin-23 alone or the downstream effector cytokine interleukin-17A may be an effective treatment strategy for organ-specific autoimmune diseases. It is likely that targeting interleukin-23 or interleukin-17A alone, as opposed to targeting interleukin-12 and interleukin-23 together, will reduce the patients' risk of developing treatment-related infections.


Assuntos
Anticorpos/imunologia , Anticorpos/uso terapêutico , Infecções Bacterianas/terapia , Interleucina-12/imunologia , Interleucina-17/imunologia , Interleucinas/imunologia , Animais , Autoimunidade/imunologia , Infecções Bacterianas/imunologia , Humanos , Inflamação/imunologia , Interleucina-23 , Subunidade p19 da Interleucina-23 , Camundongos , Mycobacterium , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/terapia , Salmonella , Infecções por Salmonella/imunologia , Infecções por Salmonella/terapia
12.
Tuberculosis (Edinb) ; 83(5): 279-85, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12972341

RESUMO

Inbred strains of mice exhibit varied patterns of susceptibility following infection with virulent Mycobacterium tuberculosis. Susceptible mice have progressive fulminate disease resulting in their premature death; in contrast, resistant mice are able to control bacterial replication, limit lung injury and survive longer. The use of these mouse strains in experimental infection has allowed the identification of immunological correlates of protective versus unsuccessful host responses to tuberculosis, and the identification of susceptibility loci by combining classical and molecular genetics. These immunological and genetic features that distinguish susceptible and resistant inbred mouse strains may allow us to better understand susceptibility to tuberculous disease in people. A possible benefit would be the delineation of markers of protective immunity for use in vaccine development. This is a review of recent insights into the genetics and immunology of resistance and susceptibility to virulent M. tuberculosis using genetically intact mice.


Assuntos
Predisposição Genética para Doença , Mycobacterium tuberculosis/patogenicidade , Tuberculose/genética , Animais , Antituberculosos/uso terapêutico , Camundongos , Camundongos Endogâmicos , Tuberculose/imunologia , Tuberculose/terapia , Vacinas contra a Tuberculose
13.
Infect Immun ; 70(11): 6302-9, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12379709

RESUMO

The T-cell immune response to Mycobacterium tuberculosis is critical in preventing clinical disease. While it is generally accepted that both major histocompatibility complex class I (MHC-I)-restricted CD8(+) and MHC-II-restricted CD4(+) T cells are important for the immune response to M. tuberculosis, the role of non-MHC-restricted T cells is still not clearly delineated. We have previously reported that CD1d(-/-) mice do not differ from CD1d(+/+) mice in their survival following infection with M. tuberculosis. We now show that, although CD1d-restricted NKT cells are not required for optimum immunity to M. tuberculosis, specific activation of NKT cells by the CD1d ligand alpha-galactosylceramide protects susceptible mice from tuberculosis. Treatment with alpha-galactosylceramide reduced the bacterial burden in the lungs, diminished tissue injury, and prolonged survival of mice following inoculation with virulent M. tuberculosis. The capacity of activated NKT cells to stimulate innate immunity and modulate the adaptive immune response to promote a potent antimicrobial immune response suggests that alpha-galactosylceramide administration could have a role in new strategies for the therapy of infectious diseases.


Assuntos
Células Matadoras Naturais/imunologia , Ativação Linfocitária , Tuberculose/imunologia , Animais , Antígenos CD1/fisiologia , Antígenos CD1d , Galactosilceramidas , Interferon gama/biossíntese , Interleucina-4/biossíntese , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos
14.
Infect Immun ; 70(8): 4501-9, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12117962

RESUMO

We report that dissemination of Mycobacterium tuberculosis in the mouse is under host control and precedes the initiation of T-cell immunity. Nine to eleven days after aerosol inoculation, M. tuberculosis disseminates to the pulmonary lymph nodes (LN), where M. tuberculosis-specific T cells are detected 2 to 3 days thereafter. This indicates that the initial spread of bacteria occurs via lymphatic drainage and that the acquired T-cell immune response is generated in the draining LN. Dissemination to peripheral sites, such as the spleen and the liver, occurs 11 to 14 days postinfection and is followed by the appearance of M. tuberculosis-specific T cells in the lung and the spleen. In all cases studied, dissemination to the LN or the spleen preceded activation of M. tuberculosis-specific T cells in that organ. Interestingly, bacteria disseminate earlier from the lungs of resistant C57BL/6 mice than from the lungs of susceptible C3H mice, and consequently, C57BL/6 mice generate an immune response to M. tuberculosis sooner than C3H mice generate an immune response. Thus, instead of spreading infection, early dissemination of M. tuberculosis may aid in the initiation of an appropriate and timely immune response. We hypothesize that this early initiation of immunity following inoculation with M. tuberculosis may contribute to the superior resistance of C57BL/6 mice.


Assuntos
Predisposição Genética para Doença , Mycobacterium tuberculosis/imunologia , Linfócitos T/imunologia , Animais , Linfócitos B/imunologia , Feminino , Imunidade Ativa , Pulmão/imunologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...