Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1175569, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351555

RESUMO

Since the early 1990s, porcine reproductive and respiratory syndrome (PRRS) virus outbreaks have been reported across various parts of North America, Europe, and Asia. The incursion of PRRS virus (PRRSV) in swine herds could result in various clinical manifestations, resulting in a substantial impact on the incidence of respiratory morbidity, reproductive loss, and mortality. Veterinary experts, among others, regularly analyze the PRRSV open reading frame-5 (ORF-5) for prognostic purposes to assess the risk of severe clinical outcomes. In this study, we explored if predictive modeling techniques could be used to identify the severity of typical clinical signs observed during PRRS outbreaks in sow herds. Our study aimed to evaluate four baseline machine learning (ML) algorithms: logistic regression (LR) with ridge and lasso regularization techniques, random forest (RF), k-nearest neighbor (KNN), and support vector machine (SVM), for the clinical impact classification of ORF-5 sequences and demographic data into high impact and low impact categories. First, baseline classifiers were evaluated using different input representations of ORF-5 nucleotides, amino acid sequences, and demographic data using a 10-fold cross-validation technique. Then, we designed a consensus voting ensemble approach to aggregate the different types of input representations for genetic and demographic data for classifying clinical impact. In this study, we observed that: (a) for abortion and pre-weaning mortality (PWM), different classifiers gained improvement over baseline accuracy, which showed the plausible presence of both genotypic-phenotypic and demographic-phenotypic relationships, (b) for sow mortality (SM), no baseline classifier successfully established such linkages using either genetic or demographic input data, (c) baseline classifiers showed good performance with a moderate variance of the performance metrics, due to high-class overlap and the small dataset size used for training, and (d) the use of consensus voting ensemble techniques helped to make the predictions more robust and stabilized the performance evaluation metrics, but overall accuracy did not substantially improve the diagnostic metrics over baseline classifiers.

2.
Prev Vet Med ; 216: 105924, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37224663

RESUMO

Over the past decades, avian influenza (AI) outbreaks have been reported across different parts of the globe, resulting in large-scale economic and livestock loss and, in some cases raising concerns about their zoonotic potential. The virulence and pathogenicity of H5Nx (e.g., H5N1, H5N2) AI strains for poultry could be inferred through various approaches, and it has been frequently performed by detecting certain pathogenicity markers in their haemagglutinin (HA) gene. The utilization of predictive modeling methods represents a possible approach to exploring this genotypic-phenotypic relationship for assisting experts in determining the pathogenicity of circulating AI viruses. Therefore, the main objective of this study was to evaluate the predictive performance of different machine learning (ML) techniques for in-silico prediction of pathogenicity of H5Nx viruses in poultry, using complete genetic sequences of the HA gene. We annotated 2137 H5Nx HA gene sequences based on the presence of the polybasic HA cleavage site (HACS) with 46.33% and 53.67% of sequences previously identified as highly pathogenic (HP) and low pathogenic (LP), respectively. We compared the performance of different ML classifiers (e.g., logistic regression (LR) with the lasso and ridge regularization, random forest (RF), K-nearest neighbor (KNN), Naïve Bayes (NB), support vector machine (SVM), and convolutional neural network (CNN)) for pathogenicity classification of raw H5Nx nucleotide and protein sequences using a 10-fold cross-validation technique. We found that different ML techniques can be successfully used for the pathogenicity classification of H5 sequences with ∼99% classification accuracy. Our results indicate that for pathogenicity classification of (1) aligned deoxyribonucleic acid (DNA) and protein sequences, with NB classifier had the lowest accuracies of 98.41% (+/-0.89) and 98.31% (+/-1.06), respectively; (2) aligned DNA and protein sequences, with LR (L1/L2), KNN, SVM (radial basis function (RBF)) and CNN classifiers had the highest accuracies of 99.20% (+/-0.54) and 99.20% (+/-0.38), respectively; (3) unaligned DNA and protein sequences, with CNN's achieved accuracies of 98.54% (+/-0.68) and 99.20% (+/-0.50), respectively. ML methods show potential for regular classification of H5Nx virus pathogenicity for poultry species, particularly when sequences containing regular markers were frequently present in the training dataset.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N2 , Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Virulência , Virus da Influenza A Subtipo H5N1/genética , Teorema de Bayes , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Aves Domésticas , DNA , Galinhas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA