Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 338: 139576, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37474039

RESUMO

Nitrogen oxides (NOx = NO + NO2) are important atmospheric pollutants that are directly harmful to human health. Recently in urban and industrial areas, synthetic materials have been developed and deployed to photocatalytically oxidize NOx to nitrate (NO3-) in order to improve air quality. We show that the natural presence of small amounts (≤5%) of titanium oxides, such as anatase and rutile, can also drive NOx oxidation to nitrate in soils under UV-visible irradiation. The NO uptake coefficients ranged between 0.1 × 10-6 for sandy soils to 6.4 × 10-5 in the case of tropical clay soils; the latter comparable in efficiency to current industrial man-made catalysts. This photocatalytic N-fixation mechanism offers a new strategy for NOx mitigation from the atmosphere by transforming it into nitrate, and simultaneously provides an energy efficient source of essential fertilizer to agriculture.


Assuntos
Poluição do Ar , Nitratos , Humanos , Solo , Óxidos de Nitrogênio/análise , Poluição do Ar/análise , Raios Ultravioleta
2.
Microbiol Res ; 271: 127350, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36913786

RESUMO

Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) are able to provide key ecosystem services, protecting plants against biotic and abiotic stresses. Here, we hypothesized that a combination of AMF (Rhizophagus clarus) and PGPR (Bacillus sp.) could enhance 33P uptake in maize plants under soil water stress. A microcosm experiment using mesh exclusion and a radiolabeled phosphorus tracer (33P) was installed using three types of inoculation: i) only AMF, ii) only PGPR, and iii) a consortium of AMF and PGPR, alongside a control treatment without inoculation. For all treatments, a gradient of three water-holding capacities (WHC) was considered i) 30% (severe drought), ii) 50% (moderate drought), and iii) 80% (optimal condition, no water stress). In severe drought conditions, AMF root colonization of dual-inoculated plants was significantly lower compared to individual inoculation of the AMF, whilst 33P uptake by dual-inoculated plants or plants inoculated with bacteria was 2.4-fold greater than the uninoculated treatment. Under moderate drought conditions the use of AMF promoted the highest 33P uptake by plants, increasing it by 2.1-fold, when compared to the uninoculated treatment. Without drought stress, AMF showed the lowest 33P uptake and, overall, plant P acquisition was lower for all inoculation types when compared to the severe and moderate drought treatments. The total shoot P content was modulated by the water-holding capacity and inoculation type, with the lowest values observed under severe drought and the highest values under moderate drought. The highest soil electrical conductivity (EC) values were found under severe drought in AMF-inoculated plants and the lowest EC for no drought in single or dual-inoculated plants. Furthermore, water-holding capacity influenced the total soil bacterial and mycorrhizal abundance over time, with the highest abundances being found under severe and moderate drought. This study demonstrates that the positive influence of microbial inoculation on 33P uptake by plants varied with soil water gradient. Furthermore, under severe stress conditions, AMF invested more in the production of hyphae, vesicles and spore production, indicating a significant carbon drain from the host plant as evidenced by the lack of translation of increased 33P uptake into biomass. Therefore, under severe drought the use of bacteria or dual-inoculation seems to be more effective than individual AMF inoculation in terms of 33P uptake by plants, while under moderate drought, the use of AMF stood out.


Assuntos
Micorrizas , Zea mays/microbiologia , Ecossistema , Plantas , Solo , Bactérias
3.
J Hazard Mater ; 447: 130825, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36708602

RESUMO

Micro and macroplastics are emerging contaminants in agricultural settings, yet their impact on nitrogen (N) cycling and partitioning in plant-soil-microbial systems is poorly understood. In this mesocosm-scale study, spring barley (Hordeum vulgare L.) was exposed to macro or microplastic produced from low density polyethylene (LDPE) or biodegradable plastic at concentrations equivalent to 1, 10 and 20 years of plastic mulch film use. Partitioning of 15N-labelled fertiliser into plant biomass, soil and leachate yielded a partial mass balance. Soil N partitioning was probed via compound-specific 15N-stable isotope analyses of soil microbial protein. Concentration-dependent decreases in plant 15N uptake occurred with increased leached nitrogen for LDPE microplastic. Assimilation into soil microbial protein was higher for biodegradable plastics, which we associate with early-stage biodegradable plastic degradation. Partitioning of 15N into inorganic soil N pools was affected by LDPE size, with lower assimilation into the microbial protein pool. While microplastics and macroplastics altered soil N cycling, the limited impacts on plant health indicated the threshold for negative effects was not reached at agriculturally relevant concentrations. This study highlights the difference between conventional and biodegradable plastics, and emphasises that the interplay of micro and macroplastics on soil N cycling must be considered in future studies.


Assuntos
Plásticos Biodegradáveis , Hordeum , Poluentes do Solo , Solo , Plásticos , Microplásticos , Polietileno , Nitrogênio , Plantas , Poliésteres
4.
J Environ Manage ; 322: 116037, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36049305

RESUMO

According to the available guidelines, good practices for calculating nitrous oxide (N2O) emission factors (EFs) for livestock excreta and manure application include that sampling duration should be of at least one year after the nitrogen (N) application or deposition. However, the available experimental data suggest that in many cases most emissions are concentrated in the first months following N application. Therefore resources could be better deployed by measuring more intensively during a shorter period. This study aimed to assess the contribution of the N2O flux in the period directly after N application to the annual net emission. We used a database of 100 year-long plot experiments from different excreted-N sources (dung, urine, farmyard manure and slurry) used to derive EFs for the UK and Ireland. We explored different shorter potential measurement periods that could be used as proxies for cumulative annual emissions. The analysis showed that the majority of emissions occur in the first months after application, especially in experiments that i) had urine as the N source, ii) had spring N application, iii) were conducted on fine-textured soils, or iv) showed high annual emissions magnitude. Experiments that showed a smaller percentage of emissions in the first months also had a low magnitude of annual net emissions (below 370 gN2O-N ha-1 year-1), so the impact of measuring during a shorter period would not greatly influence the calculated EF. Accurate EF estimations were obtained by measuring for at least 60 days for urine (underestimation: 7.1%), 120 days for dung and slurry (4.7 and 5.1%) and 180 days for FYM (1.4%). At least in temperate climates, these results are promising in terms of being able to estimate annual N2O fluxes accurately by collecting data for less than 12 months, with significant resource-saving when conducting experiments towards developing country-specific EFs.


Assuntos
Esterco , Óxido Nitroso , Agricultura/métodos , Animais , Bovinos , Fertilizantes , Irlanda , Nitrogênio , Óxido Nitroso/análise , Solo , Reino Unido
5.
J Environ Manage ; 321: 115832, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973291

RESUMO

Biochar application is not only being widely promoted as an ideal strategy to mitigate global climate warming, but it also has the advantage of reducing heavy metal bioavailability and migration in the soil. However, studies on the effects of field aging on biochar to reduce heavy metals from the soil are still limited. The present study aimed to explore the effects and mechanisms of aged biochar added to the soil planted with pepper plants on cadmium (Cd) uptake. To achieve this, un-amended soil (control), soil amended with fresh biochar, and aged biochar (biochar recovered from a long-term field trial after 9 years) were used to investigate the effects of field aging on biochar adsorption efficiency. The results revealed that the amount of Cd in the plant planted in control soil, amended with fresh and aged biochar, accounted for 40 ± 6.10, 17.18 ± 1.19, and 18.68 ± 0.79, respectively. There was a significant difference (P < 0.05) in the amount of Cd that was uptaken by plants among all treatments. However, soil amended with fresh biochar significantly (P < 0.05) decreased the amount of Cd in plants compared with soil amended with aged biochar. This indicates that field aging declines the potential of biochar to lower heavy metal bioavailability and retention in the soil. This study demonstrates that long-term burial lessens the ability of biochar to interact with Cd and suggests that biochar amendment can lower Cd in the soil, depending on the freshness and aging of biochar.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Carvão Vegetal , Plantas , Solo , Poluentes do Solo/análise
6.
Sci Total Environ ; 814: 152572, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34954175

RESUMO

Upon environmental weathering, plastic materials form smaller sized microplastics, of which the contamination in agricultural fields is of significant importance and increasing social concern. Plastic mulch films are considered a major source of agricultural soil microplastic pollution. However, the mechanism and kinetics of microplastic formation from plastic mulch films were rarely understood. In this study, the rate of microplastic generation from typical mulch films, such as oxodegradable, biodegradable, and conventional non-degradable (polyethylene, PE) mulch films, were quantified in soil under simulated UV irradiation. Results showed that microplastic formation was more rapid from biodegradable mulch film, followed sequentially by oxodegradable mulch film, white PE mulch film, and black PE mulch film. The kinetics of microplastic generation strictly followed the Schwarzchild's law, with exponential growth at indexes between 1.6309 and 2.0502 in the microplastic generation model. At a cumulative UV irradiation of 2.1 MJ/m2, the average quantity of microplastics released from biodegradable, oxodegradable, and white and black non-degradable mulch films were 475, 266, 163, 147 particles/cm2, respectively; with particle sizes largely distributed within 0.02-0.10 mm range. Concurrent increase in crystallinity and surface erosion of the mulch films were observed upon UV irradiation, which further determined the accessibility and activity of the materials to photo-oxidation (reflected as HI indexes), therefore played a critical role on the quantity and size ranges of microplastic debris.


Assuntos
Microplásticos , Solo , Agricultura , Cinética , Plásticos
7.
Nat Food ; 3(9): 741-752, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-37118141

RESUMO

Compost represents an important input for sustainable agriculture, but the use of diverse compost types causes uncertain outcomes. Here we performed a global meta-analysis with over 2,000 observations to determine whether a precision compost strategy (PCS) that aligns suitable composts and application methods with target crops and growth environments can advance sustainable food production. Eleven key predictors of compost (carbon-to-nutrient ratios, pH and salt content electric conductivity), management (nitrogen N supply) and biophysical settings (crop type, soil texture, soil organic carbon, pH, temperature and rainfall) determined 80% of the effect on crop yield, soil organic carbon and nitrous oxide emissions. The benefits of a PCS are more pronounced in drier and warmer climates and soils with acidic pH and sandy or clay texture, achieving up to 40% higher crop yield than conventional practices. Using a data-driven approach, we estimate that a global PCS can increase the production of major cereal crops by 96.3 Tg annually, which is 4% of current production. A global PCS has the technological potential to restore 19.5 Pg carbon in cropland topsoil (0-20 cm), equivalent to 26.5% of current topsoil soil organic carbon stocks. Together, this points to a central role of PCS in current and emerging agriculture.

9.
Environ Sci Technol ; 55(8): 4440-4451, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33793238

RESUMO

Pig production contributes considerably to land use and greenhouse gas (GHG) and reactive nitrogen (Nr) emissions. Land use strategies were widely proposed, but the spillover effects on biological flow are rarely explored. Here, we simultaneously assessed the carbon (C), nitrogen (N), and cropland footprints of China's pig production at the provincial scale in 2017. The environmental impacts of land use strategies were further evaluated. Results show that one kg live-weight pig production generated an average of 1.9 kg CO2-equiv and 59 g Nr emissions, occupying 3.5 m2 cropland, with large regional variations. A large reduction in GHG (58-64%) and Nr (12-14%) losses and occupied cropland (10-11%) could be achieved simultaneously if combined strategies of intensive crop production, improved feed-protein utilization efficiency, and feeding co-products were implemented. However, adopting a single strategy may have environmental side-effects. Reallocating cropland that pigs used for feed to plant food alternatives would enhance human-edible energy (3-20 times) and protein delivery (1-5 times) and reduce C and N footprints, except for rice and vegetables. Reallocating cropland to beef and milk production would decrease energy and protein supply. Therefore, a proper combination of land use strategies is essential to alleviate land use changes and nutrient emissions without sacrificing food supply.


Assuntos
Efeito Estufa , Gases de Efeito Estufa , Animais , Pegada de Carbono , Bovinos , China , Gases de Efeito Estufa/análise , Nitrogênio/análise , Suínos
10.
Environ Sci Pollut Res Int ; 28(22): 28680-28691, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33547609

RESUMO

Maize production is critical in tropical/subtropical regions, especially in developing countries where maize is a staple food. However, its environmental costs remain unclear. Southwest China is a tropical/subtropical region with large-scale maize production in each of its sub-regions. In the present study, we used Southwest China as a case study to evaluate the greenhouse gas (GHG) emissions and carbon footprint (CF) of maize production during 1996-2015 using life cycle assessment to identify the driving factors behind the GHG emissions and CF and to propose potential mitigation strategies. The mean GHG emissions of maize production per year during 1996-2015 was 4132 kg CO2-eq·ha-1, and the CF during this period was 961 kg CO2-eq·Mg-1. The GHG emissions and CF in Southwest China were 2-4 times higher than those of other major maize-producing regions worldwide. The GHG emissions and CF were both significantly correlated with the N surplus. The N surplus was also linearly correlated with annual precipitation, annual temperature and growing degree days, but not significantly related with soil pH. Scenario testing showed that the CF of maize production in Southwest China could be reduced by 41%, i.e. to 437 kg CO2-eq·Mg-1, by farmers adopting a comprehensive strategy including recommended fertiliser application rates, innovative fertilisers, and crop management to decrease GHG emissions and achieve the yield potential in the region. Integrated soil and crop management is essential for sustainable maize production in tropical/subtropical regions with complex and changeable ecological conditions, especially in developing countries where maize is a staple food.


Assuntos
Pegada de Carbono , Gases de Efeito Estufa , Agricultura , China , Efeito Estufa , Gases de Efeito Estufa/análise , Zea mays
11.
Environ Pollut ; 269: 116143, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33310496

RESUMO

The combined application of organic and synthetic nitrogen (N) fertilizers is being widely recommended in China's vegetable systems to reduce reliance on synthetic N fertilizer. However, the effect of substituting synthetic fertilizer with organic fertilizer on vegetable productivity (yield, N uptake and nitrogen use efficiency) and reactive nitrogen (Nr) losses (N2O emission, N leaching and NH3 volatilization) remains unclear. A meta-analysis was performed using peer-reviewed papers published from 2000 to 2019 to comprehensively assess the effects of combined application of organic and synthetic N fertilizers. The results indicate that overall, the vegetable yield, N2O emission and NH3 volatilization were not significantly changed, whereas N leaching was reduced by 44.6% and soil organic carbon (SOC) concentration increased by 12.5% compared to synthetic N fertilizer alone. Specifically, when synthetic N substitution rates (SRs) were ≤70%, vegetable yields and SOC concentration were increased by 5.5%-5.6% and 13.1-18.0%, and N leaching was reduced by 41.6%-48.1%. At the high substitution rate (SR>70%), vegetable yield was reduced by 13.6%, N2O emission was reduced by 14.3%, and SOC concentration increased by 16.4%. Mixed animal-plant sources of organic N preferentially increased vegetable yield and SOC concentration, and reduced N2O emission and N leaching compared with single sources of organic-N. Greenhouse gas (GHG) emission was decreased by 28.4%-34.9% by combined applications of organic and synthetic N sources, relative to synthetic N fertilizer alone. We conclude that appropriate rates (SR ≤ 70%) of combined applications of organic and synthetic N fertilizers could improve vegetable yields, decrease Nr and GHG emission, and facilitate sustainable development of coupled vegetable-livestock systems.


Assuntos
Fertilizantes , Nitrogênio , Agricultura , Animais , Carbono , China , Fertilizantes/análise , Óxido Nitroso/análise , Solo , Verduras
12.
Reprod Fertil Dev ; 33(2): 1-19, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38769670

RESUMO

Ruminant livestock are raised under diverse cultural and environmental production systems around the globe. Ruminant livestock can play a critical role in food security by supplying high-quality, nutrient-dense food with little or no competition for arable land while simultaneously improving soil health through vital returns of organic matter. However, in the context of climate change and limited land resources, the role of ruminant-based systems is uncertain because of their reputed low efficiency of feed conversion (kilogram of feed required per kilogram of product) and the production of methane as a by-product of enteric fermentation. A growing human population will demand more animal protein, which will put greater pressure on the Earth's planetary boundaries and contribute further to climate change. Therefore, livestock production globally faces the dual challenges of mitigating emissions and adapting to a changing climate. This requires research-led animal and plant breeding and feeding strategies to optimise ruminant systems. This study collated information from a global network of research farms reflecting a variety of ruminant production systems in diverse regions of the globe. Using this information, key changes in the genetic and nutritional approaches relevant to each system were drawn that, if implemented, would help shape more sustainable future ruminant livestock systems.

13.
Sci Rep ; 10(1): 15615, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985529

RESUMO

Exploiting native soil phosphorus (P) and the large reservoirs of residual P accumulated over decades of cultivation, namely "legacy P", has great potential to overcome the high demand of P fertilisers in Brazilian cropping systems. Long-term field experiments have shown that a large proportion (> 70%) of the surplus P added via fertilisers remains in the soil, mainly in forms not readily available to crops. An important issue is if the amount of legacy P mobilized from soil is sufficient for the crop nutritional demand and over how long this stored soil P can be effectively 'mined' by crops in a profitable way. Here we mapped the spatial-temporal distribution of legacy P over the past 50 years, and discussed possible agricultural practices that could increase soil legacy P usage by plants in Brazil. Mineral fertiliser and manure applications have resulted in ~ 33.4 Tg of legacy P accumulated in the agricultural soils from 1967 to 2016, with a current annual surplus rate of 1.6 Tg. Following this same rate, soil legacy P may reach up to 106.5 Tg by 2050. Agricultural management practices to enhance soil legacy P usage by crops includes increasing soil pH by liming, crop rotation, double-cropping, inter-season cover crops, no-tillage system and use of modern fertilisers, in addition to more efficient crop varieties and inoculation with P solubilising microorganisms. The adoption of these practices could increase the use efficiency of P, substantially reducing the new input of fertilisers and thus save up to 31.8 Tg of P fertiliser use (US$ 20.8 billion) in the coming decades. Therefore, exploring soil legacy P is imperative to reduce the demand for mineral fertilisers while promoting long-term P sustainability in Brazil.

14.
J Dairy Sci ; 103(7): 6706-6715, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32448577

RESUMO

Agriculture is the largest source of ammonia (NH3) emissions. As NH3 is an indirect greenhouse gas, NH3 measurements are crucial to improving greenhouse gas emission inventory estimates. Moreover, NH3 emissions have wider implications for environmental and human health. Only a few studies have measured NH3 emissions from pastures in the tropics and subtropics and none has compared emissions to inventory estimates. The objectives of this study were to (1) measure NH3 emissions from dairy pastures in tropical and subtropical regions; (2) calculate NH3 emissions factors (EF) for each campaign; and (3) compare measured EF with those based on the 2006 Intergovernmental Panel on Climate Change (IPCC) Tier 1, 2019 Refinement to the 2006 IPCC Tier 1, and the European Monitoring and Evaluation Programme/European Environmental Agency (EMPE/EEA) Tier 2 inventory estimates. Pasture NH3 emissions were measured on 3 dairy farms in Costa Rica. On each dairy, NH3 emissions were measured twice during the wet season and once during the dry season using a micrometeorological integrated horizontal-flux mass-balance method. Emissions were measured from excreta (dung and urine) deposited by grazing cattle and the subsequent application of organic (slurry) or synthetic fertilizer (ammonium nitrate or urea). Measured EF for all campaigns [from grazing cattle excreta and any subsequent slurry or fertilizer application; 4.9 ± 0.9% of applied nitrogen (mean ± SE)] were similar to those of the EMEP/EEA Tier 2 approach (6.1 ± 0.9%; mean ± SE) and 4 times lower than 2006 IPCC and 2019 Refinement to 2006 IPCC Tier 1 default estimates (17.7 ± 1.4 and 18.2 ± 0.9%, respectively; mean ± SE). Measured EF for excreta deposited on pasture and excreta both deposited on pasture and slurry application [3.9 ± 2.1 and 4.2 ± 2.1% (mean ± 95% CI), respectively] were 5 times lower than default EF assumed by 2006 IPCC and 2019 Refinement to 2006 IPCC methodology (both 20 and 21%, respectively), whereas EMEP/EAA estimates were similar [6.0 and 4.6 ± 0.3% (mean ± 95% CI), respectively]. This suggests an overestimation of EF from excreta deposited on pasture and slurry applications in tropical and subtropical regions by IPCC methodologies. Furthermore, rainfall, which is not included as a parameter in the current EMEP/EEA Tier 2 methodology, appeared to reduce NH3 emissions, suggesting that accounting for this in the inventory methodologies could improve inventory estimates.


Assuntos
Amônia/análise , Bovinos/metabolismo , Indústria de Laticínios , Monitoramento Ambiental , Gases de Efeito Estufa/análise , Agricultura , Animais , Mudança Climática , Costa Rica , Fertilizantes/análise , Nitrogênio/análise , Estações do Ano , Clima Tropical
15.
J Environ Manage ; 266: 110569, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32310118

RESUMO

High input - high output greenhouse vegetable systems are responsible for nutrient surpluses and environmental losses. Integrated strategies that improve soil, crop and nutrient management are needed to ensure more sustainable production systems. We conducted a two-year field experiment to evaluate the potential of integrated soil-crop system management (ISSM) practices to improve the productivity and environmental outcomes from an intensive greenhouse tomato production system in the Yangtze River Basin, China. Four treatments were tested: i) farmers' practice (FP); ii) soil remediation (SR), where lime nitrogen with compost addition was the only management strategy; iii) a treatment that combined soil remediation with optimized crop planting density (SRCO), which increased planting density for improving crop yield; and iv) integrated soil-crop system management (ISSM), as a systematic integrated approach, which included the combined optimization of soil remediation, crop optimization, and nutrient management. In the integrated soil-crop system management treatment, nutrient management was optimized through adoption of the most appropriate type (formula) of fertilizer for the crop, rate and application timing of synthetic fertilizer, and by substituting poultry manure with compost. Our results indicated that the fruit yield of the integrated soil-crop system management treatment was 104 t ha-1, 13.4%-37.3% higher than that of the other three treatments. The mean reactive nitrogen loss (81.1 kg N ha-1) and the greenhouse gas emissions (6495 kg CO2-eq ha-1) in the farmers' practice treatment were much higher than in the other three treatments (reactive nitrogen loss: 47.9-54.3 kg N ha-1; and greenhouse gas emissions: 4926-5468 kg CO2-eq ha-1, respectively). The mean nitrogen and carbon footprints of the integrated soil-crop system management treatment were significantly lower than those of other treatments, as a result of both the lower fertilizer nitrogen use and the greater yield. This study indicates that integrated soil-crop system management could produce greater yields and increase net profit with reduced nitrogen inputs, whilst reducing the environmental cost associated with conventional farmers' practice in plastic-greenhouse vegetable production systems.


Assuntos
Solanum lycopersicum , Agricultura , China , Fertilizantes , Nitrogênio , Solo
16.
Glob Chang Biol ; 25(8): 2530-2543, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30955227

RESUMO

Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N2 O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long-term studies were uncommon, with most data coming from studies lasting 2-3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased SOC sequestration without having significant (p > 0.05) effects on direct N2 O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO2 -eq ha-1  year-1 . One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non-legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions.


Assuntos
Gases de Efeito Estufa , Agricultura , Produção Agrícola , Produtos Agrícolas , Nitrogênio , Solo
17.
Nat Sustain ; 1(9): 477-485, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30450426

RESUMO

How we manage farming and food systems to meet rising demand is pivotal to the future of biodiversity. Extensive field data suggest impacts on wild populations would be greatly reduced through boosting yields on existing farmland so as to spare remaining natural habitats. High-yield farming raises other concerns because expressed per unit area it can generate high levels of externalities such as greenhouse gas (GHG) emissions and nutrient losses. However, such metrics underestimate the overall impacts of lower-yield systems, so here we develop a framework that instead compares externality and land costs per unit production. Applying this to diverse datasets describing the externalities of four major farm sectors reveals that, rather than involving trade-offs, the externality and land costs of alternative production systems can co-vary positively: per unit production, land-efficient systems often produce lower externalities. For GHG emissions these associations become more strongly positive once forgone sequestration is included. Our conclusions are limited: remarkably few studies report externalities alongside yields; many important externalities and farming systems are inadequately measured; and realising the environmental benefits of high-yield systems typically requires additional measures to limit farmland expansion. Yet our results nevertheless suggest that trade-offs among key cost metrics are not as ubiquitous as sometimes perceived.

19.
Environ Pollut ; 228: 504-516, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28578866

RESUMO

The anaerobic digestion of food waste for energy recovery produces a nutrient-rich digestate which is a valuable source of crop available nitrogen (N). As with any 'new' material being recycled to agricultural land it is important to develop best management practices that maximise crop available N supply, whilst minimising emissions to the environment. In this study, ammonia (NH3) and nitrous oxide (N2O) emissions to air and nitrate (NO3-) leaching losses to water following digestate, compost and livestock manure applications to agricultural land were measured at 3 sites in England and Wales. Ammonia emissions were greater from applications of food-based digestate (c.40% of total N applied) than from livestock slurry (c.30% of total N applied) due to its higher ammonium-N content (mean 5.6 kg/t compared with 1-2 kg/t for slurry) and elevated pH (mean 8.3 compared with 7.7 for slurry). Whilst bandspreading was effective at reducing NH3 emissions from slurry compared with surface broadcasting it was not found to be an effective mitigation option for food-based digestate in this study. The majority of the NH3 losses occurred within 6 h of spreading highlighting the importance of rapid soil incorporation as a method for reducing NH3 emissions. Nitrous oxide losses from food-based digestates were low, with emission factors all less than the IPCC default value of 1% (mean 0.45 ± 0.15%). Overwinter NO3- leaching losses from food-based digestate were similar to those from pig slurry, but much greater than from pig farmyard manure or compost. Both gaseous N losses and NO3- leaching from green and green/food composts were low, indicating that, in these terms, compost can be considered as an 'environmentally benign' material. These findings have been used in the development of best practice guidelines which provide a framework for the responsible use of digestates and composts in agriculture.


Assuntos
Agricultura/métodos , Nitrogênio/análise , Amônia/análise , Animais , Inglaterra , Fertilizantes , Alimentos , Gases/análise , Gado , Esterco , Nitratos , Óxido Nitroso/análise , Solo/química , Suínos , País de Gales
20.
Environ Sci Technol ; 51(8): 4503-4511, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28318241

RESUMO

Gaseous emissions from animal manure are considerable contributor to global ammonia (NH3) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH3, methane (CH4), and nitrous oxide (N2O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH3 emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid-liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH3 emissions by 78%. The resultant potential reduction in GHG emissions from China's pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH3 emissions is equivalent to 40% of the total NH3 emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues.


Assuntos
Amônia , Esterco , Poluentes Atmosféricos , Animais , Mudança Climática , Gases , Efeito Estufa , Metano , Óxido Nitroso , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...