Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMB Rep ; 56(9): 482-487, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37574807

RESUMO

Hematopoiesis is regulated by crosstalk between long-term repopulating hematopoietic stem cells (LT-HSCs) and supporting niche cells in the bone marrow (BM). Here, we describe the role of KAI1, which is mainly expressed on LT-HSCs and rarely on other hematopoietic stem-progenitor cells (HSPCs), in nichemediated LT-HSC maintenance. KAI1 activates TGF-ß1/Smad3 signal in LT-HSCs, leading to the induction of CDK inhibitors and inhibition of the cell cycle. The KAI1-binding partner DARC is expressed on macrophages and stabilizes KAI1 on LT-HSCs, promoting their quiescence. Conversely, when DARC+ BM macrophages were absent, the level of surface KAI1 on LT-HSCs decreases, leading to cell-cycle entry, proliferation, and differentiation. Thus, KAI1 acts as a functional surface marker of LTHSCs that regulates dormancy through interaction with DARCexpressing macrophages in the BM stem cell niche. Recently, we showed very special and rare macrophages expressing α-SMA+ COX2+ & DARC+ induce not only dormancy of LTHSC through interaction of KAI1-DARC but also protect HSCs by down-regulating ROS through COX2 signaling. In the near future, the strategy to combine KAI1-positive LT-HSCs and α-SMA/Cox2/DARC triple-positive macrophages will improve the efficacy of stem cell transplantation after the ablative chemo-therapy for hematological disorders including leukemia. [BMB Reports 2023; 56(9): 482-487].


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Ciclo-Oxigenase 2/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular/fisiologia , Macrófagos
2.
Cell Stem Cell ; 29(7): 1016-1017, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803223

RESUMO

Duffy antigen receptor for chemokines (DARC)/CD234, also known as atypical chemokine receptor 1 (ACKR1), is a seven-transmembrane domain protein expressed on erythrocytes, vascular endothelium, and a subset of epithelial cells (Peiper et al., 1995). Previously, we reported that ACKR1 was expressed in bone marrow macrophages. ACKR1 interacts with CD82 on long-term repopulating hematopoietic stem cells (LT-HSCs) to maintain the dormancy of LT-HSCs during homeostasis (Hur et al., 2016). We also demonstrated that ACKR1 interacts with CD82 in HSCs from human umbilical cord blood (hUCB). These findings demonstrated that CD82 is a functional surface marker of LT-HSCs and this molecule maintains LT-HSC quiescence by interactions with ACKR1-expressing macrophages in mice and humans.


Assuntos
Medula Óssea , Sistema do Grupo Sanguíneo Duffy , Monócitos , Animais , Camundongos , Sistema do Grupo Sanguíneo Duffy/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Macrófagos/metabolismo , Receptores de Quimiocinas/metabolismo
3.
J Hematol Oncol ; 14(1): 148, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530889

RESUMO

BACKGROUND: Little is known about endogenous inhibitors of angiogenic growth factors. In this study, we identified a novel endogenous anti-angiogenic factor expressed in pericytes and clarified its underlying mechanism and clinical significance. METHODS: Herein, we found Kai1 knockout mice showed significantly enhanced angiogenesis. Then, we investigated the anti-angiogenic roll of Kai1 in vitro and in vivo. RESULTS: KAI1 was mainly expressed in pericytes rather than in endothelial cells. It localized at the membrane surface after palmitoylation by zDHHC4 enzyme and induced LIF through the Src/p53 pathway. LIF released from pericytes in turn suppressed angiogenic factors in endothelial cells as well as in pericytes themselves, leading to inhibition of angiogenesis. Interestingly, KAI1 had another mechanism to inhibit angiogenesis: It directly bound to VEGF and PDGF and inhibited activation of their receptors. In the two different in vivo cancer models, KAI1 supplementation significantly inhibited tumor angiogenesis and growth. A peptide derived from the large extracellular loop of KAI1 has been shown to have anti-angiogenic effects to block the progression of breast cancer and retinal neovascularization in vivo. CONCLUSIONS: KAI1 from PC is a novel molecular regulator that counterbalances the effect of angiogenic factors.


Assuntos
Proteína Kangai-1/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica , Animais , Feminino , Proteína Kangai-1/genética , Masculino , Microdomínios da Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Arch Pharm Res ; 42(3): 195-205, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30877558

RESUMO

Currently, coronary artery disease accounts for a large proportion of deaths occurring worldwide. Damage to the heart muscle over a short period of time leads to myocardial infarction (MI). The biological mechanisms of atherosclerosis, one of the causes of MI, have been well studied. Resistin, a type of adipokine, is closely associated with intravascular level of low-density lipoprotein cholesterol and augmentation of the expression of adhesion molecules in endothelial cells. Therefore, resistin, which is highly associated with inflammation, can progress into coronary artery disease. Adenylyl cyclase associated protein 1, a binding partner of resistin, also plays an important role in inducing pro-inflammatory cytokines. The induction of these cytokines can aggravate atherosclerosis by promoting severe plaque rupture of the lesion site. Recently, drugs, such as statins that can inhibit inflammation have been extensively studied. The development of effective new drugs that can directly or indirectly block pro-inflammatory cytokines may have a great potential in the treatment of coronary artery disease in the future.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/farmacologia , Doenças Cardiovasculares/patologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia
6.
Cell Stem Cell ; 18(4): 508-21, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26996598

RESUMO

Hematopoiesis is regulated by crosstalk between long-term repopulating hematopoietic stem cells (LT-HSCs) and supporting niche cells in the bone marrow (BM). Here, we examine the role of CD82/KAI1 in niche-mediated LT-HSC maintenance. We found that CD82/KAI1 is expressed predominantly on LT-HSCs and rarely on other hematopoietic stem-progenitor cells (HSPCs). In Cd82(-/-) mice, LT-HSCs were selectively lost as they exited from quiescence and differentiated. Mechanistically, CD82-based TGF-ß1/Smad3 signaling leads to induction of CDK inhibitors and cell-cycle inhibition. The CD82 binding partner DARC/CD234 is expressed on macrophages and stabilizes CD82 on LT-HSCs, promoting their quiescence. When DARC(+) BM macrophages were ablated, the level of surface CD82 on LT-HSCs decreased, leading to cell-cycle entry, proliferation, and differentiation. A similar interaction appears to be relevant for human HSPCs. Thus, CD82 is a functional surface marker of LT-HSCs that maintains quiescence through interaction with DARC-expressing macrophages in the BM stem cell niche.


Assuntos
Sistema do Grupo Sanguíneo Duffy , Células-Tronco Hematopoéticas , Proteína Kangai-1 , Macrófagos , Receptores de Superfície Celular , Animais , Feminino , Humanos , Masculino , Camundongos , Sistema do Grupo Sanguíneo Duffy/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteína Kangai-1/biossíntese , Proteína Kangai-1/deficiência , Proteína Kangai-1/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...