Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(19): 5112-5119, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38709179

RESUMO

Tungsten disulfide (WS2), a promising electrocatalyst made from readily available materials, demonstrates significant effectiveness in the hydrogen-evolution reaction (HER). The study conducts a thorough investigation using various analytical methods such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and in situ Raman spectroscopy. These techniques have uncovered changes in the WS2 particle structure during HER. Through employing EPR, XAS, and in situ Raman spectroscopy, the research reveals structural and chemical transformations. This includes the formation of novel W species and signs of W-O bond formation. Moreover, significant changes in the morphology of the particles were observed. These findings offer enhanced insights into the mechanisms of WS2 under HER conditions, highlighting its catalytic performance and durability.

2.
J Phys Chem Lett ; 15(13): 3591-3602, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38527269

RESUMO

This study focuses on the oxygen-evolution reaction (OER) activity comparison between two forms of NiFe (hydr)oxides: compound 1, where Fe ions are applied on the surface of nickel (hydr)oxide, and compound 2, with Fe ions incorporated into the structural matrix of nickel (hydr)oxide. The observed exponential link between Coulombic energy and the total charge of the system points to a direct proportionality between the potential and the concentration of oxidized nickel ions (e.g., V ∝ [oxidized Ni]), diverging from the logarithmic relationship outlined in the Nernst equation or its modifications, which is not evident in this case. Initial visible spectroscopy indicates a notable trend toward oxidation. As, during the oxidation, more Ni is oxidized, a repulsion effect develops, diminishing the likelihood of further oxidation, and a distinct linear correlation emerges between the quantity of oxidized Ni(II) and the applied potentials.

3.
ACS Appl Mater Interfaces ; 16(12): 14669-14679, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498683

RESUMO

Mn-rich P2-type layered oxide cathode materials suffer from severe capacity loss caused by detrimental phase transition and transition metal dissolution, making their implementation difficult in large-scale sodium-ion battery applications. Herein, we introduced a high-valent Sb5+ substitution, leading to a biphasic P2/O3 cathode that suppresses the P2-O2 phase transformation in the high-voltage condition attributed to the stronger Sb-O covalency that introduces extra electrons to the O atom, reducing oxygen loss from the lattices and improving structural stability, as confirmed by first-principle calculations. Besides, the enhanced Na+ diffusion kinetics and thermodynamics in the modified sample are associated with the enlarged lattice parameters. As a result, the proposed cathode delivers a discharge capacity of 142.6 mAh g-1 at 0.1C between 1.5 and 4.3 V and excellent performance at a high mass loading of 8 mg cm3 with a specific capacity of 131 mAh g-1 at 0.2C. Furthermore, it also possesses remarkable rate capability (90.3 mAh g-1 at 5C), specifying its practicality in high-energy-density sodium-ion batteries. Hence, this work provides insights into incorporating high-valent dopants for high-performance Mn-rich cathodes.

4.
Langmuir ; 39(47): 16881-16891, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37970729

RESUMO

The oxygen-evolution reaction (OER) is a bottleneck in water splitting, which is a critical process for energy storage. In this study, the electrochemistry of Pb in the absence or presence of K2FeO4, as a soluble Fe source, is examined at pH ≈ 13. Our findings indicate that Pb exhibits limited catalytic activity for the OER under alkaline conditions. However, upon the addition of K2FeO4 to the electrolyte, a significant enhancement in the OER activity is observed in the presence of Pb. A notable observation in this study is the formation of stable Fe(IV) species following the OER during chronoamperometry experiments conducted in an alkaline solution. In addition to in situ Raman and visible spectroscopies, the operated electrodes have been characterized by high-resolution transmission electron microscopy, scanning electron microscopy, electron spin resonance spectroscopy, X-ray diffraction, electrochemical methods, electron paramagnetic resonance, and X-ray absorption spectroscopy. Through our experimental investigations, it is consistently observed that the presence of Fe ions on the surface of Pb/PbOx serves as an effective catalyst for the OER. However, it is important to note that this heightened OER activity is only temporary due to the low adhesion of Fe ions on the surface of Pb/PbOx.

5.
Inorg Chem ; 62(38): 15766-15776, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37700523

RESUMO

Large-scale solar-driven water splitting is a way to store energy, but it requires the development of practical and durable oxygen evolution reaction (OER) catalysts. The present paper aims to investigate the mechanism of the OER, local pH, high-valent metal ions, limitations, conversions, and details during the OER in the presence of FeNi foam using in situ surface-enhanced Raman spectroscopy. This research also explores the use of in situ surface-enhanced Raman spectroscopy for detecting species on foam surfaces during the OER. The acidic media around the electrode not only limit the process but also affect the phosphate ion protonation and overall catalysis effectiveness. The study proposes that FeNi hydroxides serve as true catalysts for OER under neutral conditions, rather than FeNi phosphates. However, phosphate species remain crucial for proton transfer and water molecule adsorption. Changes observed in pH at the open-circuit potential suggest new insights concerning the coordination of Ni(II) to phosphate ions under certain conditions. By extrapolating the Tafel plot, the overpotential for the onset of OER was determined to be 470 mV. Furthermore, the overpotentials for current densities of 1 and 5 mA/cm2 were 590 and 790 mV, respectively. These findings offer valuable insights into the advancement of the OER catalysts and our understanding of the underlying mechanism for efficient water splitting; both are crucial elements for the purpose of energy storage.

6.
Langmuir ; 39(33): 11807-11818, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37556847

RESUMO

An efficient and durable oxygen evolution reaction (OER) catalyst is necessary for the water-splitting process toward energy conversion. The OER through water oxidation reactions could provide electrons for H2O, CO2, and N2 reduction and produce valuable compounds. Herein, the FeNi (1:1 Ni/Fe) alloy as foam, after anodizing at 50 V in a two-electrode system in KOH solution (1.0 M), was characterized by Raman spectroscopy, diffuse reflectance spectroscopy (DRS), X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), transmission electron microscopy (TEM), high-angle annular dark-field imaging (HAADF)-scanning transmission electron microscopy (STEM) and used as an efficient and durable OER electrocatalyst in KOH solution (1.0 M). The overpotential for the onset of the OER based on extrapolation of the Tafel plot was 225 mV. The overpotentials for the current densities of 10 and 30 mA/cm2 are observed at 270 and 290 mV, respectively. In addition, a low Tafel slope is observed, 38.0 mV per decade, for the OER. To investigate the mechanism of the OER, in situ surface-enhanced Raman spectroscopy was used to detect FeNi hydroxide and characteristic peaks of H2O. Impurities in KOH can adsorb onto the electrode surface during the OER. Peaks corresponding to Ni(III) (hydr)oxide and FeO42- can be detected during the OER, but high-valent FeNi (hydr)oxides are unstable and reduce under the open circle potential. Metal hydroxide transformations during the OER and anion adsorption should be carefully considered. In addition, Fe3O4 may convert to γ-Fe2O3 during the OER. This study aims to offer logical perspectives on the dynamic changes that occur during the OER under alkaline conditions in an anodized FeNi alloy. These changes encompass variations in morphology, surface oxidation, the generation of high-valent species, and phase conversion during the OER.

7.
Nanomaterials (Basel) ; 13(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570540

RESUMO

ZnO is a potential candidate for providing an economic and environmentally friendly substitute for energy storage materials. Therefore, in this work, Fe-doped ZnO nanostructures prepared using the microwave irradiation procedure were investigated for structural, morphological, magnetic, electronic structural, specific surface area and electrochemical properties to be used as electrodes for supercapacitors. The X-ray diffraction, high-resolution transmission electron microscopy images, and selective-area electron diffraction pattern indicated that the nanocrystalline structures of Fe-doped ZnO were found to possess a hexagonal wurtzite structure. The effect of Fe doping in the ZnO matrix was observed on the lattice parameters, which were found to increase with the dopant concentration. Rods and a nanosheet-like morphology were observed via FESEM images. The ferromagnetic nature of samples is associated with the presence of bound magnetic polarons. The enhancement of saturation magnetization was observed due to Fe doping up to 3% in correspondence with the increase in the number of bound magnetic polarons with an Fe content of up to 3%. This behavior is observed as a result of the change in the oxidation state from +2 to +3, which was a consequence of Fe doping ranging from 3% to 5%. The electrode performance of Fe-doped ZnO nanostructures was studied using electrochemical measurements. The cyclic voltammetry (CV) results inferred that the specific capacitance increased with Fe doping and displayed a high specific capacitance of 286 F·g-1 at 10 mV/s for 3% Fe-doped ZnO nanostructures and decreased beyond that. Furthermore, the stability of the Zn0.97Fe0.03O electrode, which was examined by performing 2000 cycles, showed excellent cyclic stability (85.0% of value retained up to 2000 cycles) with the highest specific capacitance of 276.4 F·g-1, signifying its appropriateness as an electrode for energy storage applications.

8.
Nano Lett ; 23(14): 6360-6368, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37409775

RESUMO

Vertical two-terminal synaptic devices based on resistive switching have shown great potential for emulating biological signal processing and implementing artificial intelligence learning circuitries. To mimic heterosynaptic behaviors in vertical two-terminal synaptic devices, an additional terminal is required for neuromodulator activity. However, adding an extra terminal, such as a gate of the field-effect transistor, may lead to low scalability. In this study, a vertical two-terminal Pt/bilayer Sr1.8Ag0.2Nb3O10 (SANO) nanosheet/Nb:SrTiO3 (Nb:STO) device emulates heterosynaptic plasticity by controlling the number of trap sites in the SANO nanosheet via modulation of the tunneling current. Similar to biological neuromodulation, we modulated the synaptic plasticity, pulsed pair facilitation, and cutoff frequency of a simple two-terminal device. Therefore, our synaptic device can add high-level learning such as associative learning to a neuromorphic system with a simple cross-bar array structure.

9.
Inorg Chem ; 62(30): 12157-12165, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37462411

RESUMO

Cerium(IV) ammonium nitrate (CAN) has been extensively used as a sacrificial oxidant to study water-oxidation catalysts (WOCs). Although nickel hydroxide has been extensively investigated as WOCs, the water-oxidation reaction (WOR) and mechanistic studies in the presence of CAN and nickel hydroxide were rarely performed. Herein, using in situ Raman spectroscopy, in situ X-ray absorption spectroscopy, and in situ electron paramagnetic resonance spectroscopy, WOR in the presence of CAN and ß-Ni(OH)2 was investigated. The proposed WOR mechanism involves the oxidation of ß-Ni(OH)2 by CAN, leading to the formation of γ-NiO(OH). γ-NiO(OH), in the presence of acidic conditions, evolves oxygen and is reduced to Ni(II). In other words, the role of ß-Ni(OH)2 is the storage of four oxidizing equivalents by CAN, and then a four-electron reaction could result in a WOR with low activation energy. ß-Ni(OH)2 in CAN at concentrations of 0.10 M shows WOR with a maximum turnover frequency and a turnover number (for 1000 s) of 5.5 × 10-5/s and 2.0 × 10-2 mol (O2)/mol(Ni), respectively. In contrast to ß-Ni(OH)2, Ni(OH2)62+ (aq) could not be oxidized to γ-NiO(OH). Indeed, Ni(OH2)62+ (aq) is the decomposition product of ß-Ni(OH)2/CAN.

10.
Sci Rep ; 13(1): 10769, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402753

RESUMO

This study explores influence of charge transfer and X-ray absorption characteristics in aluminum (Al) and copper (Cu) co-doped zinc oxide (ZnO) nanostructures for perovskite solar cell electrodes. Sol-gel technique was employed to synthesize the nanostructures, and their optical and morphological properties were investigated. X-ray diffraction (XRD) analysis confirmed high crystallinity and also single-phase composition of all the samples, particularly up to 5% Al co-doping. Field emission scanning electron microscopy (FESEM) exhibited the formation of pseudo-hexagonal wurtzite nanostructure and the transition to nanorods at 5% Al co-doping. Diffuse reflectance spectroscopy indicated a reduction in the optical band gap of co-doped zinc oxide from 3.11 to 2.9 eV with increasing Al doping. Photoluminescence spectra (PL) exhibited a decrease in peak intensity, suggesting enhanced conductivity in ZnO, also confirmed from I-V measurements. Near-edge X-ray absorption fine structure (NEXAFS) analysis depicts that charge transfer from Al to oxygen (O) species enhanced the photosensing properties of the nanostructure, which was supported by FESEM micrographs and PL spectra. Furthermore, the study discovered that 5% Al co-doping significantly reduced the density of emission defects (deep-level) in Cu-ZnO nanostructure. These findings highlight the potential of Cu and Al co-doped ZnO materials for perovskite solar cell electrodes, as their improved optical and morphological properties resulting from charge transfer could enhance device performance. The investigation of charge transfer and X-ray absorption characteristics provides valuable insights into the underlying mechanisms and behaviors of the co-doped ZnO nanostructures. However, further research is required to delve into the intricate hybridization resulting from charge transfer and explore the broader impact of co-doping on other properties of the nanostructures, enabling a comprehensive understanding of their potential applications in perovskite solar cells.

11.
Nanomaterials (Basel) ; 13(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37513092

RESUMO

Herein, we have reported a novel strategy for improving the electrochemical performance of laser-induced graphene (LIG) supercapacitors (SCs). The LIG was prepared using a CO2 laser system. The polyimide polymer was the source material for the fabrication of the LIG. The doping process was performed in situ using the CO2 laser, which works as a rapid thermal treatment to combine graphene and NiO particles. NiO was used to improve the capacitance of graphene by combining an electric double-layer capacitor (EDLC) with the pseudo-capacitance effect. The high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Raman spectroscopy showed that the structure of the LIG is multilayered and waved. The HRTEM image proves the distribution of NiO fine particles with sizes of 5-10 nm into the graphene layers. The electrochemical performance of the as-prepared LIG was tested. The effect of the combination of the two materials (oxide and carbon) was investigated at different concentrations. The LIG showed a specific capacitance of 69 Fg-1, which increased up to 174 Fg-1 for the NiO-doped LIG. The stability investigations showed that the electrodes were very stable for more than 1000 cycles. This current study establishes an innovative method to improve the electrochemical properties of LIG.

12.
Dalton Trans ; 52(32): 11176-11186, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37519100

RESUMO

Solar fuel production by photosynthetic systems strongly relies on developing efficient and stable oxygen-evolution catalysts (OECs). Cerium(IV) ammonium nitrate (CAN) has been the most commonly used sacrificial oxidant to investigate OECs. Although many metal oxides have been extensively investigated as OECs in the presence of CAN, mechanistic studies were rarely reported. Herein, first, Fe(III) (hydr)oxide (FeOxHy) was prepared by the reaction of Fe(ClO4)3 and KOH solution and characterized by some methods. Then, changes in Fe oxide in the presence of CAN during the OER were tracked using in situ Raman spectroscopy, in situ X-ray absorption spectroscopy, in situ visible spectroscopy, and in situ electron paramagnetic resonance spectroscopy. FeOxHy in the presence of CAN and during the OER converted to γ-Fe2O3 and [Fe(H2O)6]3+, and a small amount of oxygen was formed. A maximum turnover frequency and turnover number of 10-6 s-1 and 1.3 × 10-3 mol(O2)/mol(Fe) (for half an hour) in the presence of CAN (0.20 M) and FeOxHy were observed.

13.
Materials (Basel) ; 16(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37374513

RESUMO

Magnetic nanoparticles of NiFe2O4 were successfully prepared by utilizing the sol-gel techniques. The prepared samples were investigated through various techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), dielectric spectroscopy, DC magnetization and electrochemical measurements. XRD data analysed using Rietveld refinement procedure inferred that NiFe2O4 nanoparticles displayed a single-phase nature with face-centred cubic crystallinity with space group Fd-3m. Average crystallite size estimated using the XRD patterns was observed to be ~10 nm. The ring pattern observed in the selected area electron diffraction pattern (SAED) also confirmed the single-phase formation in NiFe2O4 nanoparticles. TEM micrographs confirmed the uniformly distributed nanoparticles with spherical shape and an average particle size of 9.7 nm. Raman spectroscopy showed characteristic bands corresponding to NiFe2O4 with a shift of the A1g mode, which may be due to possible development of oxygen vacancies. Dielectric constant, measured at different temperatures, increased with temperature and decreased with increase in frequency at all temperatures. The Havrilliak-Negami model used to study the dielectric spectroscopy indicated that a NiFe2O4 nanoparticles display non-Debye type relaxation. Jonscher's power law was utilized for the calculation of the exponent and DC conductivity. The exponent values clearly demonstrated the non-ohmic behaviour of NiFe2O4 nanoparticles. The dielectric constant of the nanoparticles was found to be >300, showing a normal dispersive behaviour. AC conductivity showed an increase with the rise in temperature with the highest value of 3.4 × 10-9 S/cm at 323 K. The M-H curves revealed the ferromagnetic behaviour of a NiFe2O4 nanoparticle. The ZFC and FC studies suggested a blocking temperature of ~64 K. The saturation of magnetization determined using the law of approach to saturation was ~61.4 emu/g at 10 K, corresponding to the magnetic anisotropy ~2.9 × 104 erg/cm3. Electrochemical studies showed that a specific capacitance of ~600 F g-1 was observed from the cyclic voltammetry and galvanostatic charge-discharge, which suggested its utilization as a potential electrode for supercapacitor applications.

14.
Nanomaterials (Basel) ; 13(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37368299

RESUMO

To meet the growing demand for efficient and sustainable power sources, it is crucial to develop high-performance energy storage systems. Additionally, they should be cost-effective and able to operate without any detrimental environmental side effects. In this study, rice husk-activated carbon (RHAC), which is known for its abundance, low cost, and excellent electrochemical performance, was combined with MnFe2O4 nanostructures to improve the overall capacitance of asymmetric supercapacitors (ASCs) and their energy density. A series of activation and carbonization steps are involved in the fabrication process for RHAC from rice husk. Furthermore, the BET surface area for RHAC was determined to be 980 m2 g-1 and superior porosities (average pore diameter of 7.2 nm) provide abundant active sites for charge storage. Additionally, MnFe2O4 nanostructures were effective pseudocapacitive electrode materials due to their combined Faradic and non-Faradic capacitances. In order to assess the electrochemical performance of ASCs extensively, several characterization techniques were employed, including galvanostatic charge -discharge, cyclic voltammetry, and electrochemical impedance spectroscopy. Comparatively, the ASC demonstrated a maximum specific capacitance of ~420 F/g at a current density of 0.5 A/g. The as-fabricated ASC possesses remarkable electrochemical characteristics, including high specific capacitance, superior rate capability, and long-term cycle stability. The developed asymmetric configuration retained 98% of its capacitance even after 12,000 cycles performed at a current density of 6A/g, demonstrating its stability and reliability for supercapacitors. The present study demonstrates the potential of synergistic combinations of RHAC and MnFe2O4 nanostructures in improving supercapacitor performance, as well as providing a sustainable method of using agricultural waste for energy storage.

15.
Langmuir ; 39(15): 5542-5553, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37029750

RESUMO

Recently, copper(II) complexes have been extensively investigated as oxygen-evolution reaction (OER) catalysts through a water-oxidation reaction. Herein, new findings regarding OER in the presence of a Cu(II) complex with 6,6'-dihydroxy-2,2'-bipyridine ligand are reported. Using scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, Raman spectroscopy, in situ visible microscopy, in situ visible spectroelectrochemistry, X-ray absorption spectroscopy, and electrochemistry, it is hypothesized that the film formed on the electrode's surface in the presence of this complex causes an appropriated matrix to produce Cu (hydr)oxide. The resulting Cu (hydr)oxide could be a candidate for OER catalysis. The formed film could form Cu (hydr)oxide and stabilize it. Thus, OER activity increases in the presence of this complex.

16.
Adv Sci (Weinh) ; 10(16): e2207695, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36991522

RESUMO

Oxygen evolution reaction (OER) under acidic conditions becomes of significant importance for the practical use of a proton exchange membrane (PEM) water electrolyzer. In particular, maximizing the mass activity of iridium (Ir) is one of the maiden issues. Herein, the authors discover that the Ir-doped calcium copper titanate (CaCu3Ti4O12, CCTO) perovskite exhibits ultrahigh mass activity up to 1000 A gIr -1 for the acidic OER, which is 66 times higher than that of the benchmark catalyst, IrO2 . By substituting Ti with Ir in CCTO, metal-oxygen (M-O) covalency can be significantly increased leading to the reduced energy barrier for charge transfer. Further, highly polarizable CCTO perovskite referred to as "colossal dielectric", possesses low defect formation energy for oxygen vacancy inducing a high number of oxygen vacancies in Ir-doped CCTO (Ir-CCTO). Electron transfer occurs from the oxygen vacancies and Ti to the substituted Ir consequentially resulting in the electron-rich Ir and -deficient Ti sites. Thus, favorable adsorptions of oxygen intermediates can take place at Ti sites while the Ir ensures efficient charge supplies during OER, taking a top position of the volcano plot. Simultaneously, the introduced Ir dopants form nanoclusters at the surface of Ir-CCTO, which can boost catalytic activity for the acidic OER.

17.
RSC Adv ; 12(46): 29666-29676, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36321078

RESUMO

Herein, we systematically studied the effect of various excitation processes on the structural, optical, and magnetic properties of ZnO films implanted with 80 keV Ar+, 110 keV Mn+, and 190 keV Ag+ ions. Four different doses of 1 × 1013, 1 × 1014, 1 × 1015, and 2 × 1016 ions per cm2 were used for implantation. It was observed that the structural, optical, and magnetic properties of the implanted samples were dominantly affected at the highest dose of 2 × 1016 ions per cm2. For lower doses, insignificant changes in these properties were observed. A comparison of various processes involved in the implantation process shows that both the electronic excitation and nuclear excitation processes are responsible for the changes in the structural, optical, and magnetic properties of the implanted ZnO films.

18.
RSC Adv ; 12(31): 20360-20378, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35919598

RESUMO

Li-ion rechargeable batteries are promising systems for large-scale energy storage solutions. Understanding the electrochemical process in the cathodes of these batteries using suitable techniques is one of the crucial steps for developing them as next-generation energy storage devices. Due to the broad energy range, synchrotron X-ray techniques provide a better option for characterizing the cathodes compared to the conventional laboratory-scale characterization instruments. This work gives an overview of various synchrotron radiation techniques for analyzing cathodes of Li-rechargeable batteries by depicting instrumental details of X-ray diffraction, X-ray absorption spectroscopy, X-ray imaging, and X-ray near-edge fine structure-imaging. Analysis and simulation procedures to get appropriate information of structural order, local electronic/atomic structure, chemical phase mapping and pores in cathodes are discussed by taking examples of various cathode materials. Applications of these synchrotron techniques are also explored to investigate oxidation state, metal-oxygen hybridization, quantitative local atomic structure, Ni oxidation phase and pore distribution in Ni-rich layered oxide cathodes.

19.
Dalton Trans ; 51(32): 12170-12180, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35876690

RESUMO

In the context of energy storage, the oxygen-evolution reaction (OER, 2H2O → O2 + 4H+ + 4e-) through the water-oxidation reaction is a thermodynamically uphill reaction in overall water splitting. In recent years, copper(II) coordination compounds have been extensively used for the OER. However, challenges remain in finding the mechanism of the OER in the presence of these metal coordination compounds. Herein, the electrochemical OER activity is investigated in the presence of a copper(II) coordination compound at pH ≈ 7. While the investigations on finding true catalysts for the OER are focused on the working electrode, herein, for the first time, the focus is on the decomposition of copper(II) coordination compound (CuL3, L: 2,2'-bipyridine N,N'-dioxide) during the OER on the counter electrode toward the precipitation of copper(I) oxide and metallic Cu.

20.
Materials (Basel) ; 15(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744177

RESUMO

BiFe1−xCrxO3, (0 ≤ x ≤ 10) nanoparticles were prepared through the sol−gel technique. The synthesized nanoparticles were characterized using various techniques, viz., X-ray diffraction, high-resolution field emission scanning electron microscopy (HRFESEM), energy dispersive spectroscopy (EDS), UV−Vis absorption spectroscopy, photoluminescence (PL), dc magnetization, near-edge X-ray absorption spectroscopy (NEXAFS) and cyclic voltammetry (CV) measurements, to investigate the structural, morphological, optical, magnetic and electrochemical properties. The structural analysis showed the formation of BiFeO3 with rhombohedral (R3c) as the primary phase and Bi25FeO39 as the secondary phase. The secondary phase percentage was found to reduce with increasing Cr content, along with reductions in crystallite sizes, lattice parameters and enhancement in strain. Nearly spherical shape morphology was observed via HRFESEM with Bi, Fe, Cr and O as the major contributing elements. The bandgap reduced from 1.91 to 1.74 eV with the increase in Cr concentration, and PL spectra revealed emissions in violet, blue and green regions. The investigation of magnetic field (H)-dependent magnetization (M) indicated a significant effect of Cr substitution on the magnetic properties of the nanoparticles. The ferromagnetic character of the samples was found to increase with the increase in the Cr concentration and the increase in the saturation magnetization. The Fe (+3/+4) was dissolved in mixed-valence states, as found through NEXAFS analysis. Electrochemical studies showed that 5%-Cr-doped BFO electrode demonstrated outstanding performance for supercapacitors through a specific capacitance of 421 F g−1 measured with a scan rate of 10 mV s−1. It also demonstrated remarkable cyclic stability through capacitance retention of >78% for 2000 cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...