Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(7): 4396-4403, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35290031

RESUMO

Bacterial quorum quenching (QQ), whose mechanism involves the degradation of quorum-sensing signal molecules, is an effective strategy for controlling biofouling in membrane bioreactors (MBRs). However, MBRs operated at low temperatures, either due to cold climates or seasonal variations, exhibit severe deterioration in QQ efficiency. In this study, a modified culture method for Rhodococcus sp. BH4, a QQ bacterium, was developed to induce environmental adaptation in cold regions. BH4-L, which was prepared by the modified culture method, showed enhancement in QQ efficiency at low temperatures. The higher QQ efficiency obtained by employing BH4-L at 10 °C (compared with that obtained by employing BH4 at 10 °C) was attributed to the higher live/dead cell ratio in the BH4-L-entrapping beads. When BH4-L-entrapping beads were applied to lab-scale MBRs operated at low temperatures, membrane biofouling in MBRs at low temperatures was successfully mitigated because BH4-L could substantially reduce the concentration of signal molecules (N-acyl homoserine lactones) in the biocake. Employing BH4-L in QQ-MBRs could offer a novel solution to the problem of severe membrane biofouling in MBRs in cold regions.


Assuntos
Incrustação Biológica , Rhodococcus , Acil-Butirolactonas , Incrustação Biológica/prevenção & controle , Reatores Biológicos/microbiologia , Membranas Artificiais , Percepção de Quorum
2.
Membranes (Basel) ; 12(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35207131

RESUMO

Municipal wastewater has been identified as a potential source of natural phosphorus (P) that is projected to become depleted in a few decades based on current exploitation rates. This paper focuses on combining a bench-scale anaerobic/anoxic/aerobic membrane bioreactor (MBR) and magnesium carbonate (MgCO3)-based pellets to effectively recover P from municipal wastewater. Ethanol was introduced into the anoxic zone of the MBR system as an external carbon source to improve P release via the enhanced biological phosphorus removal (EBPR) mechanism, making it available for adsorption by the continuous-flow MgCO3 pellet column. An increase in the concentration of P in the MBR effluent led to an increase in the P adsorption capacity of the MgCO3 pellets. As a result, the anaerobic/anoxic/aerobic MBR system, combined with a MgCO3 pellet column and ethanol, achieved 91.6% P recovery from municipal wastewater, resulting in a maximum P adsorption capacity of 12.8 mg P/g MgCO3 through the continuous-flow MgCO3 pellet column. Although the introduction of ethanol into the anoxic zone was instrumental in releasing P through the EBPR, it could potentially increase membrane fouling by increasing the concentration of extracellular polymeric substances (EPSs) in the anoxic zone.

3.
Membranes (Basel) ; 11(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34940469

RESUMO

Insufficient mechanical strength and wide pore size distribution of nanofibrous membranes are the key hindrances for their concrete applications in membrane distillation. In this work, various post-treatment methods such as dilute solvent welding, vapor welding, and cold-/hot-pressing processes were used to enhance the physical properties of styrene-acrylonitrile (SAN) nanofiber membranes fabricated by the modified electrospinning process. The effects of injection rate of welding solution and a working distance during the welding process with air-assisted spraying on characteristics of SAN nanofiber membranes were investigated. The welding process was made less time-consuming by optimizing system parameters of the electroblowing process to simultaneously exploit residual solvents of fibers and hot solvent vapor to reduce exposure time. As a result, the welded SAN membranes showed considerable enhancement in mechanical robustness and membrane integrity with a negligible reduction in surface hydrophobicity. The hot-pressed SAN membranes obtained the highest mechanical strength and smallest mean pore size. The modified SAN membranes were used for the desalination of synthetic seawater in a direct contact membrane distillation (DCMD). As a result, it was found that the modified SAN membranes performed well (>99.9% removal of salts) for desalination of synthetic seawater (35 g/L NaCl) during 30 h operation without membrane wetting. The cold-/hot-pressing processes were able to improve mechanical strength and boost liquid entry pressure (LEP) of water. In contrast, the welding processes were preferred to increase membrane flexibility and permeation.

4.
ACS ES T Water ; 1(8)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34676375

RESUMO

Effective recovery of phosphorus from municipal wastewater could be one of the best practical alternatives to protect aquatic environments from eutrophication and save natural phosphorus resources. This paper focuses on validating magnesium carbonate (MgCO3)-based pellets combined with a bench-scale anoxic/aerobic membrane bioreactor (MBR) system for advanced phosphorus recovery from municipal wastewater. As the flow rate of wastewater into the MgCO3 column decreased from 10 L/d to 2.5 L/d, the phosphorus recovery rate of the MgCO3-based pellets increased from 54.3 to 93.5%. However, the column's severe clogging was found after a 13-days operation due to the high removal of total suspended solids (TSS) (~82%) through the MgCO3 column. The anoxic/aerobic MBR introduction provided efficient removal of TSS, organic matter, and ammonia nitrogen before the MgCO3 column. The combination of MBR with the MgCO3 column achieved 73.1% phosphorus recovery from municipal wastewater without physical clogging. The P recovery capacity of the MgCO3-based pellets was maintained at 0.47 mg ortho-P/g MgCO3-based pellet during the continuous operation. Physical and chemical properties of MgCO3-based pellets before and after the experiment were characterized using scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) surface area analyzer.

5.
Environ Sci Technol ; 55(16): 11388-11396, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34310128

RESUMO

Irreversible faradic reactions in reverse electrodialysis (RED) are an emerging concern for scale-up, reducing the overall performance of RED and producing environmentally harmful chemical species. Capacitive RED (CRED) has the potential to generate electricity without the necessity of irreversible faradic reactions. However, there is a critical knowledge gap in the fundamental understanding of the effects of operational stack voltages of CRED on irreversible faradic reactions and the performance of CRED. This study aims to develop an active control strategy to avoid irreversible faradic reactions and pH change in CRED, focusing on the effects of a stack voltage (0.9-5.0 V) on irreversible faradic reactions and power generation. Results show that increasing the initial output voltage of CRED by increasing a stack voltage has an insignificant impact on irreversible faradic reactions, regardless of the stack voltage applied, but a cutoff output voltage of CRED is mainly responsible for controlling irreversible faradic reactions. The CRED system with eliminating irreversible faradic reactions achieved a maximum power density (1.6 W m-2) from synthetic seawater (0.513 M NaCl) and freshwater (0.004 M NaCl). This work suggests that the control of irreversible faradic reactions in CRED can provide stable power generation using salinity gradients in large-scale operations.


Assuntos
Água Doce , Salinidade , Eletricidade , Fenômenos Físicos , Água do Mar
6.
Water (Basel) ; 12(3): 1-676, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32704396

RESUMO

This review discusses Legionella, among the most prolific and publicly well-known waterborne pathogens, and advances in potential treatment technologies. The number of cases associated with Legionella continues to rise, as does its public awareness. Currently, cases associated with premise plumbing account for the largest number of legionellosis cases in the United States. So, while it is important to understand Legionella as such, it is also important to investigate how to treat drinking water in premise plumbing for Legionella and other waterborne pathogens. While there are currently several methods recognized as potential means of inactivating waterborne pathogens, several shortcomings continue to plague its implementation. These methods are generally of two types. Firstly, there are chemical treatments such as chlorine, chlorine dioxide, monochloramine, ozone, and copper-silver ionization. Secondly, there are physical treatments such as thermal inactivation and media filtration. Their shortcomings range from being labor-intensive and costly to having negative health effects if not properly operated. Recently developed technologies including ultraviolet (UV) irradiation using light emitting diodes (LEDs) and innovative carbon nanotube (CNT) filters can better control waterborne pathogens by allowing for the simultaneous use of different treatment measures in plumbing systems.

7.
Chem Eng J ; 366: 21-26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275054

RESUMO

Despite municipal chlorination and secondary disinfection, opportunistic waterborne pathogens (e.g., Legionella spp.) persist in public and private water distribution systems. As a potential source of healthcare-acquired infections, this warrants development of novel pathogen removal and inactivation systems. In this study, electrically heatable carbon nanotube (CNT) point-of-use (POU) filters have been designed to remove and inactivate Legionella pneumophila in water. The CNT/polymer composite membranes effectively removed Legionella (> 99.99%) (i.e., below detection limit) and were able to inactive them on the membrane surface at 100% efficiency within 60 s using ohmic heating at 20 V. The novel POU filters could be used as a final barrier to provide efficient rejection of pathogens and thereby simultaneously eliminate microorganisms in public and private water supplies.

8.
Water Res ; 149: 421-431, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472544

RESUMO

Harmful algal blooms are occurring more frequently in fresh water throughout the world. Certain cyanobacteria can produce and release potent toxic compounds, known as cyanotoxins, such as microcystins, cylindrospermopsin, saxitoxin, and anatoxin-a, and as such they have become a human and environmental health concern. Hybrid photocatalytic composites (HPCs) comprising carbon nanotubes on the surface of TiO2 nanotubes were designed in this study. The HPCs have a selective adsorption capacity to cyanotoxins and provide photocatalytic activity to produce reactive oxygen species for the degradation of cyanotoxins. HPCs with 5.2 mg carbon nanotubes/cm2 showed an excellent removal efficiency of microcystins-LR (>95%) at 55.6 L/m2/hr/bar. The HPCs more efficiently removed the relatively larger and more hydrophobic cyanotoxins (i.e., microcystin-LR) than the relatively smaller and more hydrophilic compounds, such as cylindrospermopsin, saxitoxin, and anatoxin-a. With a further increased in the carbon nanotube content to 8.6 mg/cm2, the adsorption capacity of the HPCs for cyanotoxins increased to 70.6% for MC-LR. However, there was significant decrease in the photocatalytic activity of the HPCs for production of reactive oxygen species, and consequently a decrease in the degradation of cyanotoxins. It is considered that this device could be used to provide complete rejection of particles and pathogens, and also to significantly reduce trace organic compounds and harmful algal toxins in emergency water supplies.


Assuntos
Cianobactérias , Nanotubos de Carbono , Água Doce , Proliferação Nociva de Algas , Humanos , Microcistinas , Água
9.
Chem Eng J ; 352: 612-624, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32831624

RESUMO

Phosphorus is an essential and limited nutrient that is supplied by a depleting resource, mineral phosphate rock. Eutrophication is occurring in many water bodies which provides an opportunity to recover this nutrient from the water. One method of recovery is through adsorption; this study focused on fabricating a porous and granular adsorptive material for the removal and recovery of phosphate. Magnesium carbonate was combined with cellulose in varying weight ratios (0, 5, 10, 15, 20%) to synthesize pellets, which were then calcined to increase internal surface area. Physiochemical properties such as surface area, surface morphology, elemental composition, and crystal structure of the materials were characterized using Brunauer, Emmett, and Teller (BET) surface area analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The pellet proved to be uniform in composition and an increase in BET surface area correlated with an increase in cellulose content until pellet stability was lost. Phosphate adsorption using the pellets was studied via batch kinetics and sorption isotherms. The pseudo-second-order kinetics model fits best suggesting that the adsorption occurring was chemisorption. The isotherm model that fit best was the Langmuir isotherm, which showed that the maximum equilibrium adsorption capacity increased with an increase in cellulose content between 10% and 20%. The average adsorption capacity achieved in the triplicate isotherm study was 96.4 mg g-1 for pellets synthesized with 15% cellulose. Overall, using cellulose and subsequent calcination created an additional internal surface area for adsorption of phosphate and suggested that granular materials can be modified for efficient removal and recovery of phosphate from water.

10.
Biofouling ; 33(10): 847-854, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28994321

RESUMO

Membrane filtration is one of the most reliable methods for water treatment. However, wider application is limited due to biofouling caused by accumulation of microorganisms on the membrane surface. This report details a heatable carbon nanotube composite membrane with self-cleaning properties for sustainable recovery from biofouling. Microfiltration polycarbonate/carbon-nanotubes hybrid membranes were fabricated using drawable nanotubes that maintained the porosity and provided electrical conductivity to the membrane. Less than 25 V potential and 2-3 W power increase membrane temperature to 100°C in ~10 s. This temperature is above what most microbial life, bacteria and viruses can handle. When this membrane was employed, filtered Escherichia coli collected on its surface were successfully annihilated within 1 min. Ohmic heating of this membrane could be an effective solution to combat biofouling and complications associated with membrane-based filtration. This is a novel and highly desirable approach to combat biofouling, due to its simplicity and economic advantage.


Assuntos
Incrustação Biológica/prevenção & controle , Membranas Artificiais , Nanotubos de Carbono , Purificação da Água/métodos , Condutividade Elétrica , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/fisiologia , Polímeros
11.
Water Res ; 114: 151-180, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28237783

RESUMO

The goal of the current article is to update new findings in membrane fouling and emerging fouling mitigation strategies reported in recent years (post 2010) as a follow-up to our previous review published in Water Research (2009). According to a systematic review of the literature, membrane bioreactors (MBRs) are still actively investigated in the field of wastewater treatment. Notably, membrane fouling remains the most challenging issue in MBR operation and attracts considerable attention in MBR studies. In this review, we summarized the updated information on foulants composition and characteristics in MBRs, which greatly improves our understanding of fouling mechanisms. Furthermore, the emerging fouling control strategies (e.g., mechanically assisted aeration scouring, in-situ chemical cleaning, enzymatic and bacterial degradation of foulants, electrically assisted fouling mitigation, and nanomaterial-based membranes) are comprehensively reviewed. As a result, it is found that the fundamental understanding of dynamic changes in membrane foulants during a long-term operation is essential for the development and implementation of fouling control methods. Recently developed strategies for membrane fouling control denoted that the improvement of membrane performance is not our ultimate and only goal, less energy consumption and more green/sustainable fouling control ways are more promising to be developed and thus applied in the future. Overall, such a literature review not only demonstrates current challenges and research needs for scientists working in the area of MBR technologies, but also can provide more useful recommendations for industrial communities based on the related application cases.


Assuntos
Membranas Artificiais , Eliminação de Resíduos Líquidos , Reatores Biológicos/microbiologia , Eletricidade , Águas Residuárias/química
12.
Water Sci Technol ; 72(6): 908-16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26360750

RESUMO

Coal seam gas-associated water (CSGAW), which is a by-product of coal seam gas (CSG) production typically contains significant amounts of salts and has potential environmental issues. In this study, we optimized a bench-scale vacuum membrane distillation (VMD) process with flat-sheet hydrophobic polytetrafluoroethylene (PTFE) membranes for the treatment of synthetic CSGAW (conductivity = 15 mS/cm). To study performance of the VMD process, we explored the effects of feed temperature (T(f) = 60, 70, and 80°C), feed flow rate (V(f) = 60, 120, and 240 mL/min), and vacuum pressure (P(v) = 3, 6, and 9 kPa) on water permeability through the PTFE membrane in the VMD process. Under the optimum conditions (i.e. T(f) = 80°C, V(f) = 240 mL/min, P(v) = 3 kPa), water permeability and rejection efficiency of salts by the VMD process were found to be 5.5 L/m(2)/h (LMH) and 99.9%, respectively, after 2 h filtration. However, after 8 h operation, the water permeability decreased by 70% compared with the initial flux due to the formation of fouling layer of calcium, chloride, sodium, magnesium, and potassium on the membrane surface.


Assuntos
Destilação/métodos , Filtração/métodos , Membranas Artificiais , Reciclagem , Purificação da Água/métodos , Água/química , Carvão Mineral , Filtração/instrumentação , Microscopia Eletrônica de Varredura , Permeabilidade , Politetrafluoretileno , Pressão , Sais/química , Vácuo
13.
Sci Total Environ ; 524-525: 290-9, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25897734

RESUMO

Soil column (SC) experiments were conducted to investigate the feasibility of using silver nanoparticles (AgNPs) as microbial inhibitors; the microbial viability affecting the degradation of pharmaceutically active compounds (PhACs) and the characteristics of organic matter during managed aquifer recharge were specifically evaluated. Natural surface water samples treated with AgNPs (0, 2.5, 5, and 10 mg L(-1)) were continually fed into the soil columns for 2 years. The adverse impact of AgNPs on the cell membrane integrity and microbial enzymatic activity was quantitatively determined using flow cytometry and adenosine triphosphate analysis. The increase in AgNP concentration in the feed water (up to 10 mg L(-1)) resulted in a corresponding deterioration in the performance of the managed aquifer recharge (MAR), with respect to the removal of organic carbon, oxidation of nitrogenous compounds, and PhAC attenuation. The fluorescence excitation-emission matrices of feed water and treated water showed the favorable removal of protein-like substances compared to humic-like substances regardless of the AgNP concentrations; however, the extent of removed fractions decreased noticeably when the microbial viability was lowered via AgNP treatment. The biological oxidation of organic nitrogen was almost completely inhibited when 10 mg L(-1) AgNP was added during soil passage. The attenuation of bezafibrate, ketoprofen, diclofenac, clofibric acid, and gemfibrozil was strongly associated with the significant deterioration in biodegradation as a result of AgNP activity.


Assuntos
Recuperação e Remediação Ambiental/métodos , Água Subterrânea/microbiologia , Microbiologia da Água , Biodegradação Ambiental , Água Subterrânea/química , Nanopartículas Metálicas/toxicidade , Viabilidade Microbiana , Compostos Orgânicos/metabolismo , Prata/toxicidade , Poluentes Químicos da Água/toxicidade
14.
Environ Sci Technol ; 49(2): 1068-77, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25517759

RESUMO

Metaproteomic analyses, including two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) separation and matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF)/TOF mass spectrometer (MS) detection, were used to trace and identify biocake proteins on membranes in a bench-scale submerged membrane bioreactor (MBR). 2D-PAGE images showed that proteins in the biocake (S3) at a low transmembrane pressure (TMP) level (i.e., before the TMP jump) had larger gray intensities in the pH 5.5­7.0 region regardless of the membrane flux, similar to soluble microbial product (SMP) proteins. However, the biocake (S2 and S4) at a high TMP level (i.e., after the TMP jump) had many more proteins in the pH range of 4.0­5.5, similar to extracellular polymeric substance (EPS) proteins. Such similarities between biocake proteins and SMP or EPS proteins can be useful for tracing the sources of proteins resulting in membrane fouling. In total, 183 differentially abundant protein spots were marked in the three biocakes (S2, S3, and S4). However, only 32 protein spots co-occurred in the 2D gels of the three biocakes, indicating that membrane fluxes and TMP evolution levels had significant effects on the abundance of biocake proteins. On the basis of the MS and MS/MS data, 23 of 71 protein spots were successfully identified. Of the 23 proteins, outer membrane proteins (Omp) were a major contributor (60.87%). These Omps were mainly from potential surface colonizers such as Aeromonas, Enterobacter, Pseudomonas, and Thauera. Generally, the metaproteomic analysis is a useful alternative to trace the sources and compositions of biocake proteins on the levels of molecules and bacteria species that can provide new insight into membrane fouling.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Incrustação Biológica , Reatores Biológicos/microbiologia , Proteômica/métodos , Bactérias/química , Eletroforese em Gel Bidimensional , Concentração de Íons de Hidrogênio , Membranas Artificiais , Proteínas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
15.
Water Res ; 65: 282-9, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25150515

RESUMO

Despite the growing use of carbon nanomaterials in commercial applications, very little is known about the fate of these nanomaterials once they are released into the environment. The carbon-carbon bonding of spherical sp(2) hybridized fullerene (C60) forms a strong and resilient material that resists biodegradation. Moreover, C60 is widely reported to be bactericidal. Here however, we observe the changing properties of fullerene nanoparticle aggregates aged in the presence of microbes. C60 aggregates were observed to decrease in size with aging, while hydroxylation and photosensitized reactivity measured by the production of reactive oxygen species (ROS) increased, suggesting that chemically and/or biologically-mediated activity is capable of partially transforming fullerene structure and reactivity in the environment. However, stable-isotope-labeling C60 aggregates incubated with microbial cultures from aged suspensions for 203 days did not produce significant labeled carbon dioxide, despite significant reduction in aggregate radius for biological samples. These results suggest that either the rate of biodegradation of these particles is too slow to quantify or that the biologically-enhanced transformation of these particles does not occur through microbial biodegradation to carbon dioxide.


Assuntos
Bactérias/isolamento & purificação , Fulerenos/química , Bactérias/genética , Biodegradação Ambiental , Genes de RNAr , Microbiota , Nanopartículas , RNA Ribossômico/genética , Espécies Reativas de Oxigênio/isolamento & purificação , Suspensões , Fatores de Tempo
16.
Artigo em Inglês | MEDLINE | ID: mdl-24521414

RESUMO

The release of silver (Ag) nanoparticles (NPs) into sewage streams has heightened concerns about potential adverse impacts on wastewater treatment processes. Here, we show that the rate constants of both biological nitrification and organic oxidation decreased exponentially with an increase in the Ag NP concentration, but nitrification was more severely inhibited than the organic oxidation even at low Ag NP concentrations (<1 mg Ag L(-1)) in batch experiments. The long-term exposure effects of Ag NPs on activated sludge bacteria were evaluated in sequencing batch reactors (SBRs) fed with two different substrates favoring heterotrophic and autotrophic bacteria. From a continuous operation for 50 days, it was found that heterotrophic bacteria in the organic removal process have higher tolerance to Ag NPs than do nitrifying bacteria. The effects of Ag NPs on the microbial community in both SBRs were analyzed using 16S ribosomal ribonucleic acid (rRNA) gene sequences obtained from pyrosequencing. The results showed that the level of microbial susceptibility is different for each type of microorganism and that the microbial diversity decreased dramatically after continuous exposure to Ag NPs for 50 days, resulting in a decrease of wastewater treatment efficiency.


Assuntos
Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Bactérias/genética , Reatores Biológicos , Variação Genética , Nanopartículas Metálicas/química , Nitrificação/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Esgotos/microbiologia , Prata/química , Especificidade da Espécie
17.
PLoS One ; 7(8): e42270, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912694

RESUMO

BACKGROUND: The complex characteristics and unclear biological fate of biomacromolecules (BMM), including colloidal and soluble microbial products (SMP), extracellular polymeric substances (EPS) and membrane surface foulants (MSF), are crucial factors that limit our understanding of membrane fouling in membrane bioreactors (MBRs). FINDINGS: In this study, the microbial transformation of BMM was investigated in a lab-scale MBR by well-controlled bioassay tests. The results of experimental measurements and mathematical modeling show that SMP, EPS, and MSF had different biodegradation behaviors and kinetic models. Based on the multi-exponential G models, SMP were mainly composed of slowly biodegradable polysaccharides (PS), proteins (PN), and non-biodegradable humic substances (HS). In contrast, EPS contained a large number of readily biodegradable PN, slowly biodegradable PS and HS. MSF were dominated by slowly biodegradable PS, which had a degradation rate constant similar to that of SMP-PS, while degradation behaviors of MSF-PN and MSF-HS were much more similar to those of EPS-PN and EPS-HS, respectively. In addition, the large-molecular weight (MW) compounds (>100 kDa) in BMM were found to have a faster microbial transformation rate compared to the small-MW compounds (<5 kDa). The parallel factor (PARAFAC) modeling of three-dimensional fluorescence excitation-emission matrix (EEM) spectra showed that the tryptophan-like PN were one of the major fractions in the BMM and they were more readily biodegradable than the HS. Besides microbial mineralization, humification and hydrolysis could be viewed as two important biotransformation mechanisms of large-MW compounds during the biodegradation process. SIGNIFICANCE: The results of this work can aid in tracking the origin of membrane foulants from the perspective of the biotransformation behaviors of SMP, EPS, and MSF.


Assuntos
Incrustação Biológica , Reatores Biológicos/microbiologia , Substâncias Macromoleculares/metabolismo , Membranas Artificiais , Microbiologia , Bioensaio , Biotransformação , Cinética , Substâncias Macromoleculares/química , Modelos Teóricos , Peso Molecular
18.
Water Res ; 46(13): 4053-62, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22673338

RESUMO

The effects of naturally occurring macromolecules such as humic acid (HA) and electrolytes on four fullerene nanoparticle suspensions (i.e., C(60), C(60)(OH)(24), single- and multiwall carbon nanotubes) were explored with respect to: (1) characteristics of nanoparticle aggregates, (2) transport of the aggregates through a silica porous media, and (3) production of reactive oxygen species (ROS) from the photosensitized fullerene aggregates. The presence of HA and salts increased the size of aggregates and relative hydrophobicity associated with transport through silica beads, while decreasing ROS production. These data illustrate the importance that transformation of engineered nanomaterials (ENMs) through interactions with aquatic solutes may have in altering the environmental behavior of nanomaterials.


Assuntos
Eletrólitos/química , Substâncias Húmicas , Nanotubos de Carbono/química , Água/química , Algoritmos , Catálise/efeitos dos fármacos , Difusão/efeitos dos fármacos , Eletrólitos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Transmissão , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Nanotubos de Carbono/ultraestrutura , Processos Fotoquímicos/efeitos dos fármacos , Espécies Reativas de Oxigênio/química , Dióxido de Silício/química
19.
Environ Sci Technol ; 46(13): 7027-36, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22463850

RESUMO

Transformations and long-term fate of engineered nanomaterials must be measured in realistic complex natural systems to accurately assess the risks that they may pose. Here, we determine the long-term behavior of poly(vinylpyrrolidone)-coated silver nanoparticles (AgNPs) in freshwater mesocosms simulating an emergent wetland environment. AgNPs were either applied to the water column or to the terrestrial soils. The distribution of silver among water, solids, and biota, and Ag speciation in soils and sediment was determined 18 months after dosing. Most (70 wt %) of the added Ag resided in the soils and sediments, and largely remained in the compartment in which they were dosed. However, some movement between soil and sediment was observed. Movement of AgNPs from terrestrial soils to sediments was more facile than from sediments to soils, suggesting that erosion and runoff is a potential pathway for AgNPs to enter waterways. The AgNPs in terrestrial soils were transformed to Ag(2)S (~52%), whereas AgNPs in the subaquatic sediment were present as Ag(2)S (55%) and Ag-sulfhydryl compounds (27%). Despite significant sulfidation of the AgNPs, a fraction of the added Ag resided in the terrestrial plant biomass (~3 wt % for the terrestrially dosed mesocosm), and relatively high body burdens of Ag (0.5-3.3 µg Ag/g wet weight) were found in mosquito fish and chironomids in both mesocosms. Thus, Ag from the NPs remained bioavailable even after partial sulfidation and when water column total Ag concentrations are low (<0.002 mg/L).


Assuntos
Água Doce/química , Nanopartículas/química , Povidona/química , Prata/química , Poluentes Químicos da Água/química , Áreas Alagadas , Adsorção , Animais , Peixes/metabolismo , Sedimentos Geológicos/química , Insetos/metabolismo , Movimento (Física) , Nanopartículas/análise , Oxirredução , Plantas/metabolismo , Povidona/análise , Povidona/metabolismo , Prata/análise , Prata/metabolismo , Solo/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
20.
Water Res ; 45(1): 308-14, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20708771

RESUMO

Fullerene nanomaterials are finding an increasing number of applications in energy and environmental technologies. However, substantial production and use of fullerenes will likely lead to environmental exposure with unknown consequences. In this study, aqueous suspensions of three types of fullerenes nanoparticles, C(60) fullerene, single-wall (SW) and multi-wall (MW) carbon nanotubes (CNT) were prepared by sonication and tested for reactive oxygen species (ROS) production and oxidation of benchmark organic compounds under ultraviolet (UV)-A irradiation. All three fullerenes formed colloidal aggregates in water. SWCNTs showed the highest ROS production and 2-chlorophenol degradation followed by MWCNT, and fullerene.


Assuntos
Fulerenos/química , Nanopartículas/química , Fotoquímica/métodos , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...