Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 12(25): 13351-13359, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32572409

RESUMO

The functionalization of nanocarbon materials such as graphene has attracted considerable attention over the past decades. In this work, we designed and synthesized a unique N-heterocyclic carbene compound with a pyrene tail group (NHCp) to investigate how carbene species can be used for the functionalization of graphene. Although the carbene moiety of NHCp has the ability to covalently bond to graphene, the pyrene tail can noncovalently interact with graphene and allows monitoring its surrounding microenvironment. The major characteristics of the resulting nanohybrids were highly dependent on the type of graphene and the NHCp-to-graphene weight ratio. Importantly, despite the covalent functionalization of graphene, an anomalous decrease in the intensity of the Raman D peak and improved conductivity were observed for the nanohybrids. It was found that the covalent bond of NHCp to the graphene edge may allow the hybridization of their orbitals, which affects electronic energy levels and alters the double resonance process that originates the D peak at the edge defect. Importantly, the NHCp compound can act as a π acceptor (not just as a σ donor) via the NHCp-graphene covalent bridge. This is the first report showing that the concept of π-backdonation can be realized in two-dimensional materials, such as graphene, and rationally designed carbene molecules can functionalize graphene without losing their beneficial sp2 hybridization characteristics.

2.
Nat Commun ; 11(1): 1324, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165623

RESUMO

Insulating polymers have received little attention in electronic applications. Here, we synthesize a photoresponsive, amphiphilic block copolymer (PEO-b-PVBO) and further control the chain growth of the block segment (PVBO) to obtain different degrees of polymerization (DPs). The benzylidene oxazolone moiety in PEO-b-PVBO facilitated chain-conformational changes due to photoisomerization under visible/ultraviolet (UV) light illumination. Intercalation of the photoresponsive but electrically insulating PEO-b-PVBO into graphene sheets enabled electrical monitoring of the conformational change of the block copolymer at the molecular level. The current change at the microampere level was proportional to the DP of PVBO, demonstrating that the PEO-b-PVBO-intercalated graphene nanohybrid (PGNH) can be used in UV sensors. Additionally, discrete signals at the nanoampere level were separated from the first derivative of the time-dependent current using the fast Fourier transform (FFT). Analysis of the harmonic frequencies using the FFT revealed that the PGNH afforded sawtooth-type current flow mediated by Coulomb blockade oscillation.

3.
J Colloid Interface Sci ; 564: 88-98, 2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-31911231

RESUMO

Quantum dots (QDs) have been widely studied as promising materials for various applications because of their outstanding photoluminescence (PL). Although ligand exchange methods for QDs have been developed over two decades, the PL quantum yield (QY) of aqueous phase QDs is still lower than that of their organic phase and the mechanism of quenching has not been clearly understood. In this study, we demonstrate for the first time that 3-mercaptopropionic-capped CdZnSeS/ZnS core/shell QDs obtained via ligand exchange in a ternary solvent system containing chloroform/water/dimethyl sulfoxide can enable the fast phase transfer and zero reduction of PL under ambient condition. The new solvent system allows the ligand-exchanged QDs to exhibit enhanced QYs up to 8.1% of that of the organic-phase QDs. Based on both theoretical calculation and experiment, it was found that control over the physical/chemical perturbation between the organic/aqueous phases by choosing appropriate solvents for the ligand exchange process is very important to preserve the optical properties of QDs. We believe that our new technologies and theoretical knowledge offer opportunities for the future design and optimization of highly stable and highly luminescent aqueous-phase QDs for various applications.

4.
Nanoscale ; 12(2): 1180, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31833517

RESUMO

Correction for 'Pine cone mold: a toolbox for fabricating unique metal/carbon nanohybrid electrocatalysts' by Hyunwoo Han et al., Nanoscale, 2019, DOI: 10.1039/c9nr06794a.

5.
Langmuir ; 35(8): 3077-3086, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30703325

RESUMO

It is important to fabricate nanostructured architectures comprised of functional components for a wide variety of applications because precise structural control in the nanometer regime can yield unprecedented, fascinating properties. Owing to their well-defined microstructural characteristics, it has been popular to use carbon nanospecies, such as nanotubes and graphene, in fabricating nanocomposites and nanohybrids. Nevertheless, it still remains hard to control and manipulate nanospecies for specific applications, thus preventing their commercialization. Herein, first, we report unique one-dimensional nanoarchitectures with meso-/macropores, consisting of single-walled nanotubes (SWNTs), graphene, and polyacrylonitrile, in which poly(vinyl alcohol) was employed as a dispersing agent and sacrificial porogen. One-dimensional SWNTs and two-dimensional graphene pieces were combined in the confined interior space of electrospun nanofibers, which led to unique microstructural characteristics such as enhanced ordering of SWNTs, graphene pieces, and polymer chains in the nanofiber interior. Next, the SWNT/graphene-in-polymer nanofiber (SGPNF) structures were converted into carbonized products (SGCNFs) with effective porosity and tunable electrochemical properties. Similar to SGPNFs, the microstructural and electrical properties of the SGCNFs depended on the incorporated amount of SWNT and graphene. At higher SWNT content, the mesopore volume proportion and specific discharge capacitance of the SGCNFs increased by max. 63 and 598%, respectively. The SGCNFs showed strong potential as a high-performance electrode material for electrochemical capacitors (max. capacitance: nonactivated ∼390 F g-1 and activated ∼750 F g-1). Flexible, all solid-state capacitor cells based on SGCNFs were also successfully demonstrated as a model application. The SGCNFs can be further functionalized by various methods, which will impart attractive properties for extended applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA