Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3516, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664367

RESUMO

Chemical cross-linking reactions (XL) are an important strategy for studying protein-protein interactions (PPIs), including low abundant sub-complexes, in structural biology. However, choosing XL reagents and conditions is laborious and mostly limited to analysis of protein assemblies that can be resolved using SDS-PAGE. To overcome these limitations, we develop here a denaturing mass photometry (dMP) method for fast, reliable and user-friendly optimization and monitoring of chemical XL reactions. The dMP is a robust 2-step protocol that ensures 95% of irreversible denaturation within only 5 min. We show that dMP provides accurate mass identification across a broad mass range (30 kDa-5 MDa) along with direct label-free relative quantification of all coexisting XL species (sub-complexes and aggregates). We compare dMP with SDS-PAGE and observe that, unlike the benchmark, dMP is time-efficient (3 min/triplicate), requires significantly less material (20-100×) and affords single molecule sensitivity. To illustrate its utility for routine structural biology applications, we show that dMP affords screening of 20 XL conditions in 1 h, accurately identifying and quantifying all coexisting species. Taken together, we anticipate that dMP will have an impact on ability to structurally characterize more PPIs and macromolecular assemblies, expected final complexes but also sub-complexes that form en route.


Assuntos
Reagentes de Ligações Cruzadas , Fotometria , Desnaturação Proteica , Reagentes de Ligações Cruzadas/química , Fotometria/métodos , Proteínas/química , Proteínas/metabolismo , Eletroforese em Gel de Poliacrilamida/métodos , Mapeamento de Interação de Proteínas/métodos , Espectrometria de Massas/métodos , Humanos
2.
J Mol Biol ; 434(19): 167760, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35901867

RESUMO

DPCD is a protein that may play a role in cilia formation and whose absence leads to primary ciliary dyskinesia (PCD), a rare disease caused by impairment of ciliated cells. Except for high-throughput studies that identified DPCD as a possible RUVBL1 (R1) and RUVBL2 (R2) partner, no in-depth cellular, biochemical, and structural investigation involving DPCD have been reported so far. R1 and R2 proteins are ubiquitous highly conserved AAA + family ATPases that assemble and mature a plethora of macromolecular complexes and are pivotal in numerous cellular processes, especially by guaranteeing a co-chaperoning function within R2TP or R2TP-like machineries. In the present study, we identified DPCD as a new R1R2 partner in vivo. We show that DPCD interacts directly with R1 and R2 in vitro and in cells. We characterized the physico-chemical properties of DPCD in solution and built a 3D model of DPCD. In addition, we used a variety of orthogonal biophysical techniques including small-angle X-ray scattering, structural mass spectrometry and electron microscopy to assess the molecular determinants of DPCD interaction with R1R2. Interestingly, DPCD disrupts the dodecameric state of R1R2 complex upon binding and this interaction occurs mainly via the DII domains of R1R2.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Proteínas de Transporte , DNA Helicases , Complexos Multiproteicos , Proteínas , ATPases Associadas a Diversas Atividades Celulares/química , Proteínas de Transporte/química , DNA Helicases/química , Humanos , Complexos Multiproteicos/química , Proteínas/química
3.
Biochemistry ; 61(7): 479-493, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35315277

RESUMO

Malaria is a widespread and lethal disease caused by the Plasmodium parasites that can infect human beings through Anopheles mosquitoes. For that reason, the biology of Plasmodium needs to be studied to develop antimalarial treatments. By determining the three-dimensional structures of macromolecules, structural biology helps to understand the function of proteins and can reveal how interactions occur between biological partners. Here, we studied the ZNHIT3 and NUFIP1 proteins from Plasmodium falciparum, two proteins tightly linked to the ribosome biology. Due to their important functions in post-translational modifications of ribosomal RNAs and in ribophagy, these proteins participate in the survival of cells. In this study, we solved the three-dimensional structure of a thermally stable and species-dependent complex between fragments of these proteins. Our results were compared to the AlphaFold predictions, which motivated the study of the free ZNHIT3 fragment that binds NUFIP1. We showed that the latter fragment multimerized in vitro but also had the inner ability to change its conformation to escape the solvent exposition of key hydrophobic residues involved in the interaction with NUFIP1. Our data could open the gate to selective drug discovery processes involving these two proteins.


Assuntos
Antimaláricos , Proteínas Nucleares , Proteínas de Protozoários , Proteínas de Ligação a RNA , Animais , Anopheles , Antimaláricos/química , Humanos , Proteínas Nucleares/química , Plasmodium falciparum/química , Proteínas de Protozoários/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo
4.
Nucleic Acids Res ; 50(4): 2172-2189, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35150569

RESUMO

MicroRNAs silence mRNAs by guiding the RISC complex. RISC assembly occurs following cleavage of pre-miRNAs by Dicer, assisted by TRBP or PACT, and the transfer of miRNAs to AGO proteins. The R2TP complex is an HSP90 co-chaperone involved in the assembly of ribonucleoprotein particles. Here, we show that the R2TP component RPAP3 binds TRBP but not PACT. The RPAP3-TPR1 domain interacts with the TRBP-dsRBD3, and the 1.5 Å resolution crystal structure of this complex identifies key residues involved in the interaction. Remarkably, binding of TRBP to RPAP3 or Dicer is mutually exclusive. Additionally, we found that AGO(1/2), TRBP and Dicer are all sensitive to HSP90 inhibition, and that TRBP sensitivity is increased in the absence of RPAP3. Finally, RPAP3 seems to impede miRNA activity, raising the possibility that the R2TP chaperone might sequester TRBP to regulate the miRNA pathway.


Assuntos
MicroRNAs , Complexo de Inativação Induzido por RNA , Inativação Gênica , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Coativadores de Receptor Nuclear/química , Ribonuclease III/genética , Ribonuclease III/metabolismo
5.
Methods Mol Biol ; 2300: 251-266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33792884

RESUMO

Many RNA architectures were discovered to be involved in a wide range of essential biological processes in all organisms from carrying genetic information to gene expression regulation. The remarkable ability of RNAs to adopt various architectures depending on their environment enables the achievement of their myriads of biological functions. Nuclear Magnetic Resonance (NMR) is a powerful technique to investigate both their structure and dynamics. NMR is also a key tool for studying interactions between RNAs and their numerous partners such as small molecules, ions, proteins, or other nucleic acids.In this chapter, to illustrate the use of NMR for 3D structure determination of small noncoding RNA, we describe detailed methods that we used for the yeast C/D box small nucleolar RNA U14 from sample preparation to 3D structure calculation.


Assuntos
Pequeno RNA não Traduzido/química , Saccharomyces cerevisiae/genética , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , RNA Fúngico/química , RNA Fúngico/metabolismo , Pequeno RNA não Traduzido/metabolismo
6.
Nat Commun ; 12(1): 1859, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767140

RESUMO

Biogenesis of eukaryotic box C/D small nucleolar ribonucleoproteins initiates co-transcriptionally and requires the action of the assembly machinery including the Hsp90/R2TP complex, the Rsa1p:Hit1p heterodimer and the Bcd1 protein. We present genetic interactions between the Rsa1p-encoding gene and genes involved in chromatin organization including RTT106 that codes for the H3-H4 histone chaperone Rtt106p controlling H3K56ac deposition. We show that Bcd1p binds Rtt106p and controls its transcription-dependent recruitment by reducing its association with RNA polymerase II, modulating H3K56ac levels at gene body. We reveal the 3D structures of the free and Rtt106p-bound forms of Bcd1p using nuclear magnetic resonance and X-ray crystallography. The interaction is also studied by a combination of biophysical and proteomic techniques. Bcd1p interacts with a region that is distinct from the interaction interface between the histone chaperone and histone H3. Our results are evidence for a protein interaction interface for Rtt106p that controls its transcription-associated activity.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Chaperonas Moleculares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ativação Transcricional/fisiologia , Proliferação de Células/fisiologia , Cromatina/genética , Cristalografia por Raios X , Histonas/metabolismo , Ressonância Magnética Nuclear Biomolecular , RNA Polimerase II/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica/genética
7.
Biochemistry ; 60(30): 2349-2363, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33739091

RESUMO

Tetratricopeptide repeat domains, or TPR domains, are protein domains that mediate protein:protein interaction. As they allow contacts between proteins, they are of particular interest in transient steps of the assembly process of macromolecular complexes, such as the ribosome or the dynein arms. In this study, we focused on the first TPR domain of the human SPAG1 protein. SPAG1 is a multidomain protein that is important for ciliogenesis whose known mutations are linked to primary ciliary dyskinesia syndrome. It can interact with the chaperones RUVBL1/2, HSP70, and HSP90. Using protein sequence optimization in combination with structural and biophysical approaches, we analyzed, with atomistic precision, how the C-terminal tails of HSPs bind a variant form of SPAG1-TPR1 that mimics the wild-type domain. We discuss our results with regard to other complex three-dimensional structures with the aim of highlighting the motifs in the TPR sequences that could drive the positioning of the HSP peptides. These data could be important for the druggability of TPR regulators.


Assuntos
Antígenos de Superfície/química , Proteínas de Ligação ao GTP/química , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP90/química , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Antígenos de Superfície/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Ligação Proteica , Domínios Proteicos
8.
Nucleic Acids Res ; 49(2): 1094-1113, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33367824

RESUMO

The PAQosome is a large complex composed of the HSP90/R2TP chaperone and a prefoldin-like module. It promotes the biogenesis of cellular machineries but it is unclear how it discriminates closely related client proteins. Among the main PAQosome clients are C/D snoRNPs and in particular their core protein NOP58. Using NOP58 mutants and proteomic experiments, we identify different assembly intermediates and show that C12ORF45, which we rename NOPCHAP1, acts as a bridge between NOP58 and PAQosome. NOPCHAP1 makes direct physical interactions with the CC-NOP domain of NOP58 and domain II of RUVBL1/2 AAA+ ATPases. Interestingly, NOPCHAP1 interaction with RUVBL1/2 is disrupted upon ATP binding. Moreover, while it robustly binds both yeast and human NOP58, it makes little interactions with NOP56 and PRPF31, two other closely related CC-NOP proteins. Expression of NOP58, but not NOP56 or PRPF31, is decreased in NOPCHAP1 KO cells. We propose that NOPCHAP1 is a client-loading PAQosome cofactor that selects NOP58 to promote box C/D snoRNP assembly.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/biossíntese , Trifosfato de Adenosina/metabolismo , Proteínas do Olho/metabolismo , Técnicas de Inativação de Genes , Genes Reporter , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Humanos , Complexos Multiproteicos , Domínios Proteicos , Mapeamento de Interação de Proteínas , Proteômica/métodos , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Biomol NMR Assign ; 14(1): 131-140, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32030621

RESUMO

Many cellular functions rely on stable protein-only or protein-RNA complexes. Deciphering their assembly mechanism is a key question in cell biology. We here focus on box C/D small nucleolar ribonucleoproteins involved in ribosome biogenesis. The mature particles contain four core proteins and a guide RNA. Despite their relatively simple composition, these particles don't self-assemble in eukaryote and the production of a native and functional particle requires a large number of transient other proteins, called assembly factors. We present here 13C and 15N solid-state NMR assignment of yeast 126-residue core protein Snu13 in the context of its 50 kDa pre-complex with assembly factors Rsa1p:Hit1p. In this sample, only one third of the protein is labelled, leading to a low sensitivity. We could nevertheless obtain assignment data for 91% of the residues. Secondary structure derived from our assignments shows that Snu13p overall structure is maintained in the context of the complex. Chemical shift perturbations are analysed to evaluate Snu13p conformational changes and interaction interface upon binding to its partner proteins. While indirect perturbations are observed in the hydrophobic core, we find other good candidate residues belonging to the interaction interface. We describe the role of some Snu13p N-terminal and C-terminal residues, not identified in previous structural studies. These preliminary results will serve as a basis for future interaction studies, especially by adding RNA, to decipher box C/D snoRNP particles assembly pathway.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Ribonucleoproteínas Nucleolares Pequenas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Peso Molecular , Estrutura Secundária de Proteína
10.
Biochem J ; 476(11): 1679-1694, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31118266

RESUMO

In cells, many constituents are able to assemble resulting in large macromolecular machineries possessing very specific biological and physiological functions, e.g. ribosome, spliceosome and proteasome. Assembly of such entities is commonly mediated by transient protein factors. SPAG1 is a multidomain protein, known to participate in the assembly of both the inner and outer dynein arms. These arms are required for the function of sensitive and motile cells. Together with RUVBL1, RUVBL2 and PIH1D2, SPAG1 is a key element of R2SP, a protein complex assisting the quaternary assembly of specific protein clients in a tissue-specific manner and associating with heat shock proteins (HSPs) and regulators. In this study, we have investigated the role of TPR domains of SPAG1 in the recruitment of HSP chaperones by combining biochemical assays, ITC, NMR spectroscopy and molecular dynamics (MD) simulations. First, we propose that only two, out of the three TPR domains, are able to recruit the protein chaperones HSP70 and HSP90. We then focused on one of these TPR domains and elucidated its 3D structure using NMR spectroscopy. Relying on an NMR-driven docking approach and MD simulations, we deciphered its binding interface with the C-terminal tails of both HSP70 and HSP90. Finally, we addressed the biological function of SPAG1 and specifically demonstrated that a SPAG1 sub-fragment, containing a putative P-loop motif, cannot efficiently bind and hydrolyze GTP in vitro Our data challenge the interpretation of SPAG1 possessing GTPase activity. We propose instead that SPAG1 regulates nucleotide hydrolysis activity of the HSP and RUVBL1/2 partners.


Assuntos
Antígenos de Superfície/química , Antígenos de Superfície/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Antígenos de Superfície/genética , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ligação ao GTP/genética , Guanosina Trifosfato/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canais de Cátion TRPC/química , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
11.
Biochimie ; 164: 70-82, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30914254

RESUMO

Non-coding RNAs associate with proteins to form ribonucleoproteins (RNPs), such as ribosome, box C/D snoRNPs, H/ACA snoRNPs, ribonuclease P, telomerase and spliceosome to ensure cell viability. The assembly of these RNA-protein complexes relies on the ability of the RNA to adopt the correct bound conformation. K-turn motifs represent ubiquitous binding platform for proteins found in several cellular environment. This structural motif has an internal three-nucleotide bulge flanked on its 3' side by a G•A/A•G tandem pairs followed by one or two non-Watson-Crick pairs, and on its 5' side by a classical RNA helix. This peculiar arrangement induces a strong curvature of the phosphodiester backbone, which makes it conducive to multiple tertiary interactions. SNU13/Snu13p (Human/Yeast) binds specifically the U14 C/D box snoRNA K-turn sequence motif. This event is the prerequisite to promote the assembly of the RNP, which contains NOP58/Nop58 and NOP56/Nop56 core proteins and the 2'-O-methyl-transferase, Fibrillarin/Nop1p. The U14 small nucleolar RNA is a conserved non-coding RNA found in yeast and vertebrates required for the pre-rRNA maturation and ribose methylation. Here, we report the solution structure of the free U14 snoRNA K-turn motif (kt-U14) as determined by Nuclear Magnetic Resonance. We demonstrate that a major fraction of free kt-U14 adopts a pre-folded conformation similar to protein bound K-turn, even in the absence of divalent ions. In contrast to the kt-U4 or tyrS RNA, kt-U14 displays a sharp bent in the phosphodiester backbone. The U•U and G•A tandem base pairs are formed through weak hydrogen bonds. Finally, we show that the structure of kt-U14 is stabilized upon Snu13p binding. The structure of the free U14 RNA is the first reference example for the canonical motifs of the C/D box snoRNA family.


Assuntos
RNA Nucleolar Pequeno/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sítios de Ligação , Conformação de Ácido Nucleico , Ligação Proteica , Dobramento de RNA , Proteínas Ribossômicas/metabolismo
12.
Structure ; 26(9): 1196-1209.e8, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30033218

RESUMO

RPAP3 and PIH1D1 are part of the HSP90 co-chaperone R2TP complex involved in the assembly process of many molecular machines. In this study, we performed a deep structural investigation of the HSP binding abilities of the two TPR domains of RPAP3. We combined 3D NMR, non-denaturing MS, and ITC techniques with Y2H, IP-LUMIER, FRET, and ATPase activity assays and explain the fundamental role played by the second TPR domain of RPAP3 in the specific recruitment of HSP90. We also established the 3D structure of an RPAP3:PIH1D1 sub-complex demonstrating the need for a 34-residue insertion, specific of RPAP3 isoform 1, for the tight binding of PIH1D1. We also confirm the existence of a complex lacking PIH1D1 in human cells (R2T), which shows differential binding to certain clients. These results highlight similarities and differences between the yeast and human R2TP complexes, and document the diversification of this family of co-chaperone complexes in human.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Sítios de Ligação , Linhagem Celular , Proteínas de Choque Térmico HSP72/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Multimerização Proteica
13.
Nat Commun ; 9(1): 2093, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844425

RESUMO

R2TP is an HSP90 co-chaperone that assembles important macro-molecular machineries. It is composed of an RPAP3-PIH1D1 heterodimer, which binds the two essential AAA+ATPases RUVBL1/RUVBL2. Here, we resolve the structure of the conserved C-terminal domain of RPAP3, and we show that it directly binds RUVBL1/RUVBL2 hexamers. The human genome encodes two other proteins bearing RPAP3-C-terminal-like domains and three containing PIH-like domains. Systematic interaction analyses show that one RPAP3-like protein, SPAG1, binds PIH1D2 and RUVBL1/2 to form an R2TP-like complex termed R2SP. This co-chaperone is enriched in testis and among 68 of the potential clients identified, some are expressed in testis and others are ubiquitous. One substrate is liprin-α2, which organizes large signaling complexes. Remarkably, R2SP is required for liprin-α2 expression and for the assembly of liprin-α2 complexes, indicating that R2SP functions in quaternary protein folding. Effects are stronger at 32 °C, suggesting that R2SP could help compensating the lower temperate of testis.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Testículo/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos de Superfície/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas de Transporte/genética , Linhagem Celular , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Células HeLa , Humanos , Masculino , Proteínas de Membrana/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Transdução de Sinais
14.
Structure ; 24(10): 1693-1706, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27594683

RESUMO

Box C/D small nucleolar ribonucleoparticles (snoRNPs) support 2'-O-methylation of several target RNAs. They share a common set of four core proteins (SNU13, NOP58, NOP56, and FBL) that are assembled on different guide small nucleolar RNAs. Assembly of these entities involves additional protein factors that are absent in the mature active particle. In this context, the platform protein NUFIP1/Rsa1 establishes direct and simultaneous contacts with core proteins and with the components of the assembly machinery. Here, we solve the nuclear magnetic resonance (NMR) structure of a complex resulting from interaction between protein fragments of human NUFIP1 and its cofactor ZNHIT3, and emphasize their imbrication. Using yeast two-hybrid and complementation assays, protein co-expression, isothermal titration calorimetry, and NMR, we demonstrate that yeast and human complexes involving NUFIP1/Rsa1p, ZNHIT3/Hit1p, and SNU13/Snu13p share strong structural similarities, suggesting that the initial steps of the box C/D snoRNP assembly process are conserved among species.


Assuntos
Proteínas Nucleares/química , Proteínas de Ligação a RNA/química , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Sequência Conservada , Evolução Molecular , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição
15.
J Mol Biol ; 427(17): 2816-39, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26210662

RESUMO

In eukaryotes, nucleotide post-transcriptional modifications in RNAs play an essential role in cell proliferation by contributing to pre-ribosomal RNA processing, ribosome assembly and activity. Box C/D small nucleolar ribonucleoparticles catalyze site-specific 2'-O-methylation of riboses, one of the most prevalent RNA modifications. They contain one guide RNA and four core proteins and their in vivo assembly requires numerous factors including (HUMAN/Yeast) BCD1/Bcd1p, NUFIP1/Rsa1p, ZNHIT3/Hit1p, the R2TP complex composed of protein PIH1D1/Pih1p and RPAP3/Tah1p that bridges the R2TP complex to the HSP90/Hsp82 chaperone and two AAA+ ATPases. We show that Tah1p can stabilize Pih1p in the absence of Hsp82 activity during the stationary phase of growth and consequently that the Tah1p:Pih1p interaction is sufficient for Pih1p stability. This prompted us to establish the solution structure of the Tah1p:Pih1p complex by NMR. The C-terminal tail S93-S111 of Tah1p snakes along Pih1p264-344 folded in a CS domain to form two intermolecular ß-sheets and one covering loop. However, a thorough inspection of the NMR and crystal structures revealed structural differences that may be of functional importance. In addition, our NMR and isothermal titration calorimetry data revealed the formation of direct contacts between Pih1p257-344 and the Hsp82MC domain in the presence of Tah1p. By co-expression in Escherichia coli, we demonstrate that Pih1p has two other direct partners, the Rsa1p assembly factor and the Nop58p core protein, and in vivo and in vitro experiments mapped the required binding domains. Our data suggest that these two interactions are mutually exclusive. The implication of this finding for box C/D small nucleolar ribonucleoparticle assembly is discussed.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Escherichia coli/genética , Proteínas de Choque Térmico HSP90/genética , Interações Hidrofóbicas e Hidrofílicas , Metilação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Dobramento de Proteína , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , RNA Ribossômico/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
16.
Biomol NMR Assign ; 9(1): 99-102, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24668569

RESUMO

We report the nearly complete (1)H, (15)N and (13)C resonance assignments of the two tetratricopeptide-repeat domains of the human RPAP3 protein, a co-chaperone of the heat-shock protein family.


Assuntos
Proteínas de Transporte/química , Ressonância Magnética Nuclear Biomolecular , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína
17.
J Cell Biol ; 207(4): 463-80, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25404746

RESUMO

In vitro, assembly of box C/D small nucleolar ribonucleoproteins (snoRNPs) involves the sequential recruitment of core proteins to snoRNAs. In vivo, however, assembly factors are required (NUFIP, BCD1, and the HSP90-R2TP complex), and it is unknown whether a similar sequential scheme applies. In this paper, we describe systematic quantitative stable isotope labeling by amino acids in cell culture proteomic experiments and the crystal structure of the core protein Snu13p/15.5K bound to a fragment of the assembly factor Rsa1p/NUFIP. This revealed several unexpected features: (a) the existence of a protein-only pre-snoRNP complex containing five assembly factors and two core proteins, 15.5K and Nop58; (b) the characterization of ZNHIT3, which is present in the protein-only complex but gets released upon binding to C/D snoRNAs; (c) the dynamics of the R2TP complex, which appears to load/unload RuvBL AAA(+) adenosine triphosphatase from pre-snoRNPs; and (d) a potential mechanism for preventing premature activation of snoRNP catalytic activity. These data provide a framework for understanding the assembly of box C/D snoRNPs.


Assuntos
Proteínas Nucleares/química , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Cristalografia por Raios X , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fator 6 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteômica/métodos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleases/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Fatores de Transcrição
18.
Methods Mol Biol ; 831: 181-95, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22167675

RESUMO

The integrity and propagation of the genome depend upon the fidelity of DNA processing events, such as replication, damage recognition, and repair. Requisite to the numerous biochemical tasks required for DNA processing is the generation and manipulation of single-stranded DNA (ssDNA). As the primary eukaryotic ssDNA-binding protein, Replication Protein A (RPA) protects ssDNA templates from stray nuclease cleavage and untimely reannealment. More importantly, RPA also serves as a platform for organizing access to ssDNA for readout of the genetic code, recognition of aberrations in DNA, and processing by enzymes. We have proposed that RPA's ability to adapt to such a broad spectrum of multiprotein machinery arises in part from its modular organization and interdomain flexibility. While requisite for function, RPA's modular flexibility has presented many challenges to providing a detailed characterization of the dynamic architecture of the full-length protein. To enable the study of RPA's interdomain dynamics and responses to ssDNA binding by biophysical methods including NMR spectroscopy, we have successfully produced recombinant full-length RPA in milligram quantities at natural abundance and enriched with NMR-active isotopes.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Proteína de Replicação A/biossíntese , Proteína de Replicação A/química , Proteína de Replicação A/isolamento & purificação , Técnicas de Cultura de Células/métodos , Transformação Celular Viral , Cromatografia em Gel , Meios de Cultura/química , DNA de Cadeia Simples/metabolismo , Marcação por Isótopo/métodos , Estrutura Terciária de Proteína , Proteína de Replicação A/metabolismo
19.
Biochemistry ; 49(13): 2880-9, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20184389

RESUMO

Replication protein A (RPA) is the primary eukaryotic single-stranded DNA (ssDNA) binding protein utilized in diverse DNA transactions in the cell. RPA is a heterotrimeric protein with seven globular domains connected by flexible linkers, which enable substantial interdomain motion that is essential to its function. Small angle X-ray scattering (SAXS) experiments with two multidomain constructs from the N-terminus of the large subunit (RPA70) were used to examine the structural dynamics of these domains and their response to the binding of ssDNA. The SAXS data combined with molecular dynamics simulations reveal substantial interdomain flexibility for both RPA70AB (the tandem high-affinity ssDNA binding domains A and B connected by a 10-residue linker) and RPA70NAB (RPA70AB extended by a 70-residue linker to the RPA70N protein interaction domain). Binding of ssDNA to RPA70NAB reduces the interdomain flexibility between the A and B domains but has no effect on RPA70N. These studies provide the first direct measurements of changes in orientation of these three RPA domains upon binding ssDNA. The results support a model in which RPA70N remains structurally independent of RPA70AB in the DNA-bound state and therefore freely available to serve as a protein recruitment module.


Assuntos
DNA de Cadeia Simples/metabolismo , Proteína de Replicação A/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Proteína de Replicação A/química , Espalhamento a Baixo Ângulo , Raios X
20.
J Am Chem Soc ; 131(18): 6346-7, 2009 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-19378948

RESUMO

Modular proteins with multiple domains tethered by flexible linkers have variable global architectures. Using the eukaryotic ssDNA binding protein, Replication Protein A (RPA), we demonstrate that NMR spectroscopy is a powerful tool to characterize the remodeling of architecture in different functional states. The first direct evidence is obtained for the remodeling of RPA upon binding ssDNA, including an alteration in the availability of the RPA32N domain that may help explain its damage-dependent phosphorylation.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteína de Replicação A/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica , Proteína de Replicação A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...