Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(20): 29777-29793, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38592634

RESUMO

The toxicity of aluminum oxide (Al2O3), copper oxide (CuO), iron oxide (Fe3O4), nickel oxide (NiO), zinc oxide (ZnO), and titanium dioxide (TiO2) nanoparticles (NPs) on amphibians and their interaction with high temperatures, remain unknown. In this study, we investigated the survival, developmental, behavioral, and histological reactions of Bufotes viridis embryos and larvae exposed to different NPs for a duration of 10 days, using lethal concentrations (LC25%, LC50%, and LC75% mg/L) under both ambient (AT: 18 °C) and high (HT: 21 °C) temperatures. Based on LC, NiONPs > ZnONPs > CuONPs > Al2O3NPs > TiO2NPs > Fe3O4NPs showed the highest mortality at AT. A similar pattern was observed at HT, although mortality occurred at lower concentrations and Fe3O4NPs were more toxic than TiO2NPs. The results indicated that increasing concentrations of NPs significantly reduced hatching rates, except for TiO2NPs. Survival rates decreased, abnormality rates increased, and developmental processes slowed down, particularly for NiONPs and ZnONPs, under HT conditions. However, exposure to low concentrations of Fe3O4NPs for up to 7 days, CuONPs for up to 72 h, and NiO, ZnONPs, and TiO2NPs for up to 96 h did not have a negative impact on survival compared with the control group under AT. In behavioral tests with larvae, NPs generally induced hypoactivity at AT and hyperactivity at HT. Histological findings revealed liver and internal gill tissue lesions, and an increase in the number of melanomacrophage centers at HT. These results suggest that global warming may exacerbate the toxicity of metal oxide NPs to amphibians, emphasizing the need for further research and conservation efforts in this context.


Assuntos
Mudança Climática , Nanopartículas Metálicas , Animais , Nanopartículas Metálicas/toxicidade , Anuros , Níquel/toxicidade , Óxido de Zinco/toxicidade , Larva/efeitos dos fármacos , Titânio/toxicidade , Óxido de Alumínio/toxicidade
2.
Environ Sci Pollut Res Int ; 30(44): 100078-100094, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37624496

RESUMO

The application of nickel oxide nanoparticles (NiONPs) in various fields leads to their release into soil and water and, consequently, interaction with plants. Unlike its bulk counterpart, the phytotoxic potential of NiONPs is relatively less studied, particularly in a hormesis framework. Hormesis is an interesting phenomenon characterized by low-dose stimulation and high-dose inhibition. Therefore, this study demonstrates the stimulatory and inhibitory effects of NiONPs on Dracocephalum kotschyi Boiss as a medicinal plant cultivated in a pot experiment carried out in a greenhouse for 3 weeks. High bioaccumulation of nickel (Ni) in roots of treated plants relative to shoots indicates higher oxidative damage. NiONPs induced hormetic effects on photosynthetic pigments, as at low concentration of 50 mg/L stimulated chlorophyll (2.8-46.7%), carotenoid (16%), and anthocyanin (5.9%) contents and at higher concentrations inhibited the content of these pigments. A hormetic response was observed in growth parameters, i.e., NiONPs induced shoot height (7.2%) and weight (33%) at 100 mg/L, while inhibited shoot and root length (14.5-16.1% and 28.7-42.7%) and weight (46.8-48.1% and 37-40.6%), respectively, at 1000 and 2500 mg/L. The treated plants declined the toxic effects and oxidative stress caused by NiONPs by activating non-enzymatic antioxidants (phenolic compounds and proline) and enzymatic antioxidants, i.e., increasing the levels of SOD, POD, CAT, and APX. Therefore, the present study investigated for the first time the different mechanisms and responses of D. kotschyi plants to NiONPs in a wide range of concentrations. The results suggest that NiONPs may act as an elicitor at lower concentrations in medicinal plants according to specific conditions. However, these NPs at higher concentrations induce oxidative stress and harmful effects on plants, so their use poses serious risks to human health and the environment.


Assuntos
Antioxidantes , Nanopartículas , Humanos , Níquel/toxicidade , Níquel/química , Hormese
3.
Toxicol In Vitro ; 87: 105538, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36535556

RESUMO

The current work aimed to synthesize and characterize titanium dioxide nanoparticles (TiO2NPs) using quercetin (QE) and evaluate their biological activities, i.e., anti-hemolytic, anti-inflammatory, and cytotoxicity effects. The crystallographic phase and morphology of biosynthesized QE-TiO2NPs were characterized by XRD (X-Ray Diffraction) and TEM/FE-SEM (Transmission/Field-Emission Scanning Electron Microscopy) micrographs. Functional groups involved in the synthesis process were determined by FTIR spectroscopy (Fourier Transform-Infrared Spectroscopy). Based on the characterization results, selected QE-TiO2NPs showed a rutile phase, spherical shape, and a size range of 7.3-39 nm. The QE-TiO2NPs did not show a hemolytic effect. They indicated 95.3% red blood cells (RBCs) membrane stabilization activity and 82.6% inhibition of bovine serum albumin (BSA) denaturation, similar to a standard drug, which proved their anti-inflammatory effects. The attained results from cytotoxicity studies revealed the toxic effects of QE-TiO2NPs with IC50 values below 100 and 50 µg/mL for human breast cancer cells of MCF-7 and melanoma cancer cells of A375, respectively. These NPs did not significantly affect normal skin fibroblast cells up to 50 µg/mL and only showed a 16% inhibition rate on the cell viability at 100 µg/mL. These NPs also induced excessive ROS generation. This work established the blood/biocompatibility and excellent nanomedical applications of biosynthesized QE-TiO2NPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Humanos , Quercetina/toxicidade , Nanopartículas/toxicidade , Nanopartículas/química , Titânio/química , Microscopia Eletrônica de Transmissão , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/farmacologia , Difração de Raios X
4.
Sci Total Environ ; 806(Pt 3): 151222, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34715233

RESUMO

The extensive application of titanium dioxide nanoparticles (TiO2NPs) in agro-industrial practices leads to their high accumulation in the environment or agricultural soils. However, their threshold and ecotoxicological impacts on plants are still poorly understood. In this study, the hormetic effects of TiO2NPs at a concentration range of 0-2500 mg/L on the growth, and biochemical and physiological behaviors of Nigella arvensis in a hydroponic system were examined for three weeks. The translocation of TiO2NPs in plant tissues was characterized through scanning and transmission electron microscopy (SEM and TEM). The bioaccumulation of total titanium (Ti) was quantified by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Briefly, the elongation of roots and shoots and the total biomass growth were significantly promoted at 100 mg/L TiO2NPs. As the results indicated, TiO2NPs had a hormesis effect on the proline content, i.e., a stimulating effect at the low concentrations of 50 and 100 mg/L and an inhibiting effect in the highest concentration of 2500 mg/L. A biphasic dose-response was observed against TiO2NPs in shoot soluble sugar and protein contents. The inhibitory effects were detected at ≥1000 mg/L TiO2NPs, where the synthesis of chlorophylls and carotenoid was reduced. At 1000 mg/ L, TiO2NPs significantly promoted the cellular H2O2 generation, and increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT). Furthermore, it enhanced the total antioxidant content (TAC), total iridoid content (TIC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity. Overall, the study revealed the physiological and biochemical alterations in a medicinal plant affected by TiO2NPs, which can help to use these NPs beneficially by eliminating their harmful effects.


Assuntos
Nanopartículas , Nigella , Antioxidantes , Hormese , Peróxido de Hidrogênio , Nanopartículas/toxicidade , Titânio/toxicidade
5.
Glob Chall ; 5(12): 2100075, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938575

RESUMO

In the present study, different effective parameters (temperature, reaction time, and pH) on the synthesis of quercetin-assisted silver nanoparticles (QE-AgNPs) are optimized. These biogenic NPs are characterized by different physico-chemical analyses, including transmission electron microscopy, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and UV-visible spectroscopy. In addition, the biological properties of QE-AgNPs are evaluated through antioxidant, antimicrobial, anti-inflammatory, hemolysis, and coagulation time assays. The formation of QE-AgNPs is affected by different parameters. The optimum condition for the synthesis of QE-AgNPs is attained at 70 °C and pH 7. Prepared QE-AgNPs show a spherical shape with a crystalline nature and an average particle size of 20 ± 3.6 nm. The role of QE as a reducing and capping agent in the preparation process of QE-AgNPs is demonstrated using FTIR analysis. These NPs with excellent antioxidant activity (82.3% at a concentration of 400 µg mL-1) and anti-inflammatory properties (82.5% and 100% at concentrations of 37.25 and 500 µg mL-1, respectively), show good antimicrobial effects, particularly against Staphylococcus aureus. Furthermore, the results of the hemolytic and coagulation assay of QE-AgNPs indicate their hemo-compatibility. Therefore, hemo/bio-compatible QE-AgNPs with excellent and unique properties can be employed in different medicinal and pharmacological applications.

6.
Antioxidants (Basel) ; 10(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209510

RESUMO

Phytochemical analysis of the Iranian plant Achillea wilhelmsii led to the isolation of 17 pure secondary metabolites belonging to the classes of sesquiterpenoids and phenolics. Two of these compounds, named wilhemsin (7) and wilhelmsolide (9), are new sesquiterpenoids, and the first shows undescribed structural features. Their structures were elucidated through extensive spectroscopic analysis, mainly based on 1D and 2D NMR, and chemical derivatization. Starting from plant traditional use and previous reports on the activity of the plant extracts, all the pure compounds were evaluated on endpoints related to the treatment of metabolic syndrome. The sesquiterpene hanphyllin (8) showed a selective cholesterol-lowering activity (-12.7% at 30 µM), santoflavone (13) stimulated glucose uptake via the GLUT transporter (+16.2% at 30 µM), while the trimethoxylated flavone salvigenin (14) showed a dual activity in decreasing lipid levels (-22.5% palmitic acid biosynthesis at 30 µM) and stimulating mitochondrial functionality (+15.4% at 30 µM). This study further confirms that, in addition to the antioxidants vitexin, isovitexin, and isoschaftoside, A. wilhelmsii extracts contain molecules that can act at different levels on the metabolic syndrome symptoms.

7.
Glob Chall ; 5(4): 2000099, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33854790

RESUMO

Mercury ions are highly toxic at trace levels, and its pollution has posed a significant threat to the environment and public health, where current detection methods mainly require laborious operation and expensive instrumentation. Herein, a simple, cost-effective, instrument-free approach for selective detection of Hg2+ based on a hand-drawn paper-based naked-eye colorimetric device is developed. To develop a hand-drawn paper-based device, a crayon is used to build hydrophobic barriers and a paper puncher is applied to obtain patterns as a sensing zone. A green method for the synthesis of silver nanoparticles (AgNPs) is applied using Achillea Wilhelmsii (Aw) extract. The sensing ability of Aw-AgNPs toward Hg2+ is investigated in both solution-phase and paper substrate loaded with Aw-AgNPs using colorimetric methods. For the paper-based sensor, the quantification of the target relies on the visual readout of a color-changed sensing zone modified with Aw-AgNPs. Under optimal conditions, the color of Aw-AgNPs in aqueous solution and on the coated paper substrate can change from brown to colorless upon addition of target, with a detection limit of 28 × 10-9 m and 0.30 × 10-6 m, respectively. In conclusion, the present study indicates the potential of this hand-drawn eco-friendly paper-based sensor for monitoring of mercury.

8.
Glob Chall ; 5(2): 2000018, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552550

RESUMO

The discovery and development of active compounds to eliminate drug resistance and side effects is a crucial process. In this study, the leaf infusion of Dracocephalum kotschyi Boiss as a novel green alternative is used to synthesize silver nanoparticles (Drac-AgNPs). Antibacterial, cytotoxicity effects, hemocompatibility, and the catalytic properties of these nanoparticles are evaluated. The synthesis of Drac-AgNPs is confirmed by UV-vis spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and transmission electron microscopy, where Drac-AgNPs are spherical, with a size range of 5-63 nm. Their IC50 values against H1299 and MCF-7 cell lines are above 50 and 100 µg mL-1, respectively. Drac-AgNPs are effective against an inclusive range of the gram-positive and gram-negative bacteria, that is, Staphylococcus epidermidis, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Serratia marcescens, and Pseudomonas aeruginosa, and a low hemolytic effect makes them an exceptional AgNP with a great hemocompatibility. They show a moderate catalytic-effect in terms of removing methylene blue, with 67% degradation. Altogether, Drac-AgNP, as a multi-tasker material, shows potential for the prevention and treatment of infections and photothermal/chemotherapy of cancers.

9.
Heliyon ; 6(6): e04265, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32613127

RESUMO

The present study was designed to determine the glaucine, quercetin and kaempferol contents in the root and shoot parts of Nigella arvensis, treated for 21 days with different concentrations of the nanoparticles (NPs), including titanium dioxide (TiO2), alumina (Al2O3) and nickel oxide (NiO) by high-performance liquid chromatography (HPLC). Results showed a significant increase in the total flavonoid and total alkaloid content in treated plants. Glaucine content in shoot parts was significantly higher than the root parts. The highest amount of glaucine was obtained in shoots and roots exposed to NiONPs at concentrations of 1000 and 2500 mg/L with up to 3.2 and 2.6 fold increase compared to the control group, respectively. The maximum content of quercetin was observed in the shoot and root parts under 50 mg/L NiONPs with 2.2 and 1.8 fold increase compared to the control group, respectively. The kaempferol content was significantly decreased in all treatment, except for 1000 mg/L NiONPs treatment in the root parts, which was 2.9 fold higher than the control group. Apart from the toxic effects of some NPs, our findings suggest that the NPs at specific levels can be considered as new and appropriate elicitors for in vitro production and increasing the biosynthesis of secondary metabolites to use in pharmaceutical applications.

10.
Sci Rep ; 10(1): 3847, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123269

RESUMO

The effects of different concentrations (0, 50,100, 1000 and 2500 mg/L) of engineered aluminum and nickel oxide nanoparticles (Al2O3 and NiO NPs) on plant growth, oxidative stress and antioxidant activities in the hydroponically grown tissues of Nigella arvensis L. were investigated. The plant biomass was significantly increased under 50 and 100 mg/L of Al2O3 NPs or 50 mg/L of NiO NPs treatment, but was significantly decreased at higher concentrations of these nanoparticles. Assays of several enzymatic antioxidants such as ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD) in roots and shoots indicate a general increase of activities after exposure to 50-2,500 mg/L of Al2O3 NPs and NiO NPs. The results are corroborated by an increased 2,2-diphenyl-1-picryl hydrazyl (DPPH) scavenging activity, total antioxidant capacity, total reducing power, total iridoids content, total saponin content, and total phenolic content in treated plants by Al2O3 NPs compared to the control plants. By contrast, the antioxidant activities, formation of secondary metabolites, and other related physiological parameters such as the total antioxidant capacity, DPPH scavenging activity and total saponin content were inhibited after the concentration of NiO NPs was increased to 100 mg/L. Total phenols, saponins, iridoids and total antioxidant content and DPPH scavenging activity were increased in plants treated with 100-2,500 mg/L Al2O3 NPs. Overall, these two nanoparticles displayed different effects in the shoots and roots of plants at different concentrations, which may be due to their physico-chemical properties.


Assuntos
Alumínio/química , Alumínio/farmacologia , Antioxidantes/metabolismo , Nanopartículas Metálicas/química , Níquel/química , Níquel/farmacologia , Nigella/efeitos dos fármacos , Compostos de Bifenilo/química , Engenharia , Peróxido de Hidrogênio/metabolismo , Nigella/crescimento & desenvolvimento , Nigella/metabolismo , Picratos/química
11.
Sci Rep ; 10(1): 1762, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32020015

RESUMO

In the current study, isoimperatorin, a natural furanocoumarin, is used as a reducing reagent to synthesize isoimperatorin mediated silver nanoparticles (Iso-AgNPs), and photocatalytic and electrocatalytic activities of Iso-AgNPs are evaluated. Iso-AgNPs consisted of spherically shaped particles with a size range of 79-200 nm and showed catalytic activity for the degradation (in high yields) of New Fuchsine (NF), Methylene Blue (MB), Erythrosine B (ER) and 4-chlorophenol (4-CP) under sunlight irradiation. Based on obtained results, Iso-AgNPs exhibited 96.5%, 96.0%, 92%, and 95% degradation rates for MB, NF, ER, and 4-CP, respectively. The electrochemical performance showed that the as-prepared Iso-AgNPs exhibited excellent electrocatalytic activity toward hydrogen peroxide (H2O2) reduction. It is worth noticing that the Iso-AgNPs were used as electrode materials without any binder. The sensor-based on binder-free Iso-AgNPs showed linearity from 0.1 µM to 4 mM with a detection limit of 0.036 µM for H2O2. This binder-free and straightforward strategy for electrode preparation by silver nanoparticles may provide an alternative technique for the development of other nanomaterials based on isoimperatorin under green conditions. Altogether, the application of isoimpratorin in the synthesis of nano-metallic electro and photocatalysts, especially silver nanoparticles, is a simple, cost-effective and efficient approach.

12.
J Biomed Mater Res A ; 107(3): 621-630, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30411481

RESUMO

In this work, biosynthesis potentials of Dracocephalum kotschyi leaf extract for the production of gold nanoparticle (AuNPs) were studied, and the biological (catalytic, antibacterial, antioxidant, and anticancer) activities of studied AuNPs were evaluated. Different analytical techniques including UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), energy dispersive X-ray analysis, and transmission electron microscopy (TEM) were used for the characterization of AuNPs. Moreover, Different testing methods were used for evaluating biological activities of biosynthesized AuNPs. The formation of AuNPs was confirmed by color change and UV-visible spectroscopic analysis. Field emission (FE)-SEM and TEM images were used to characterize phytosynthesized AuNPs which were predominantly spherical in shape with size in the range of 5-21 nm. These spherical NPs were found to be 39.79 ± 5 nm in size as determined by dynamic light scattering particle size analyzer. XRD pattern confirms the crystalline nature of the biosynthesized nanoparticles. The phytoconstituents involved in the reduction and stabilization of nanoparticles have been identified using FTIR spectra. The phytosynthesized AuNPs showed effective antioxidant, antibacterial and catalytic reduction activities. Furthermore, they have inhibited H1229 and MCF-7 cancer cell lines proliferation in a dose-dependent manner. These results have supported that D. kotschyi leaf extract was very efficient for the synthesis of AuNPs, and synthesized NPs showed enhanced biological activities which make them suitable for biomedical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 621-630, 2019.


Assuntos
Antibacterianos , Antioxidantes , Proliferação de Células/efeitos dos fármacos , Ouro , Lamiaceae/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Folhas de Planta/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Relação Dose-Resposta a Droga , Ouro/química , Ouro/farmacologia , Humanos , Células MCF-7 , Microscopia Eletrônica de Transmissão , Tamanho da Partícula
13.
Artif Cells Nanomed Biotechnol ; 46(3): 579-588, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28541741

RESUMO

In the present work, we studied the reduction of gold ions into gold nanoparticles using Nigella arvensis leaf extract in the one-step green synthesis method. The formation of N. arvensis gold nanoparticles (NA-GNPs) was confirmed by UV-Vis spectroscopy, XRD, FT-IR and TEM analyses. The XRD pattern confirmed the crystal structure of NA-GNPs, and TEM image showed the small size (3-37 nm) and almost spherical shape of NA-GNPs. NA-GNPs have not shown enhanced antioxidant properties compared to the plant extract while they were active against the clinical isolated bacterial strains. These nanoparticles showed the cytotoxicity effects against H1299 and MCF-7 cancer cell lines with an IC50 value of 10 and 25 µg/ml, respectively. The extract of N. arvensis contained 212 µg/ml flavonoids and 145 µg/ml phenolic compounds. The contents of total phenolics and flavonoids of biosynthesized NA-GNPs were 68 and 189 µg/ml, respectively. Plant extract and NA-GNPs exhibited a maximum DPPH scavenging activity of 32% and 12%, respectively. The catalytic activity of NA-GNPs against methylene blue was 44%. In conclusion, these results suggest that NA-GNPs can act as a promising candidate for different medical applications produced by cost-effective, eco-friendly and straightforward green method.


Assuntos
Antibacterianos , Antioxidantes , Citotoxinas , Ouro , Nanopartículas Metálicas/química , Nigella/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ouro/química , Ouro/farmacologia , Humanos , Células MCF-7
14.
Iran J Pharm Res ; 16(3): 1167-1175, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29201104

RESUMO

The biogenic synthesis of metal nanomaterial offers an environmentally benign alternative to the traditional chemical synthesis routes. In the present study, the green synthesis of silver nanoparticles (AgNPs) from aqueous solution of silver nitrate (AgNO3) by using Nigella arvensis L. seed powder extract (NSPE) has been reported. AgNPs were characterized by UV-vis absorption spectroscopy with an intense surface plasmon resonance band at 435 nm which reveals the formation of nanoparticles. Fourier transmission infrared spectroscopy (FTIR) showed that nanoparticles were capped with plant compounds. Transmission electron microscopy (TEM) showed silver nanoparticles, with a size of 2-15 nm, were spherical. The X-ray diffraction spectrum (XRD) pattern clearly indicates that AgNPs formed in the present synthesis were crystalline in nature. Stabilized films of exudate synthesized AgNPs were effective anti-bacterial agents. In addition, these biologically synthesized nanoparticles were also proved to exhibit excellent cytotoxic effect on a human breast cancer cell line (MCF-7) and a human colorectal adenocarcinoma cell line (HT-29). The results confirmed that the NSPE is a very good ecofriendly and nontoxic source for the synthesis of AgNPs as compared to the conventional chemical/physical methods. Therefore, N. arvensis seed provides future opportunities in nanomedicine by tagging nanoparticles with secondary metabolites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...