Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 38(39): 8364-8377, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30104344

RESUMO

Elevated iron deposition has been reported in Parkinson's disease (PD). However, the route of iron uptake leading to high deposition in the substantia nigra is unresolved. Here, we show a mechanism in enhanced Fe2+ uptake via S-nitrosylation of divalent metal transporter 1 (DMT1). While DMT1 could be S-nitrosylated by exogenous nitric oxide donors, in human PD brains, endogenously S-nitrosylated DMT1 was detected in postmortem substantia nigra. Patch-clamp electrophysiological recordings and iron uptake assays confirmed increased Mn2+ or Fe2+ uptake through S-nitrosylated DMT1. We identified two major S-nitrosylation sites, C23 and C540, by mass spectrometry, and DMT1 C23A or C540A substitutions abolished nitric oxide (NO)-mediated DMT1 current increase. To evaluate in vivo significance, lipopolysaccharide (LPS) was stereotaxically injected into the substantia nigra of female and male mice to induce inflammation and production of NO. The intranigral LPS injection resulted in corresponding increase in Fe2+ deposition, JNK activation, dopaminergic neuronal loss and deficit in motoric activity, and these were rescued by the NO synthase inhibitor l-NAME or by the DMT1-selective blocker ebselen. Lentiviral knockdown of DMT1 abolished LPS-induced dopaminergic neuron loss.SIGNIFICANCE STATEMENT Neuroinflammation and high cytoplasmic Fe2+ levels have been implicated in the initiation and progression of neurodegenerative diseases. Here, we report the unexpected enhancement of the functional activity of transmembrane divalent metal transporter 1 (DMT1) by S-nitrosylation. We demonstrated that S-nitrosylation increased DMT1-mediated Fe2+ uptake, and two cysteines were identified by mass spectrometry to be the sites for S-nitrosylation and for enhanced iron uptake. One conceptual advance is that while DMT1 activity could be increased by external acidification because the gating of the DMT1 transporter is proton motive, we discovered that DMT1 activity could also be enhanced by S-nitrosylation. Significantly, lipopolysaccharide-induced nitric oxide (NO)-mediated neuronal death in the substantia nigra could be ameliorated by using l-NAME, a NO synthase inhibitor, or by ebselen, a DMT1-selective blocker.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Neurônios Dopaminérgicos/metabolismo , Ferro/metabolismo , Locomoção , Óxido Nítrico/química , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Animais , Proteínas de Transporte de Cátions/química , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos Transgênicos
2.
Neuromolecular Med ; 19(2-3): 375-386, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28695462

RESUMO

Exposure to divalent metals such as iron and manganese is thought to increase the risk for Parkinson's disease (PD). Under normal circumstances, cellular iron and manganese uptake is regulated by the divalent metal transporter 1 (DMT1). Accordingly, alterations in DMT1 levels may underlie the abnormal accumulation of metal ions and thereby disease pathogenesis. Here, we have generated transgenic mice overexpressing DMT1 under the direction of a mouse prion promoter and demonstrated its robust expression in several regions of the brain. When fed with iron-supplemented diet, DMT1-expressing mice exhibit rather selective accumulation of iron in the substantia nigra, which is the principal region affected in human PD cases, but otherwise appear normal. Alongside this, the expression of Parkin is also enhanced, likely as a neuroprotective response, which may explain the lack of phenotype in these mice. When DMT1 is overexpressed against a Parkin null background, the double-mutant mice similarly resisted a disease phenotype even when fed with iron- or manganese-supplemented diet. However, these mice exhibit greater vulnerability toward 6-hydroxydopamine-induced neurotoxicity. Taken together, our results suggest that iron accumulation alone is not sufficient to cause neurodegeneration and that multiple hits are required to promote PD.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Ferro/metabolismo , Transtornos Parkinsonianos/metabolismo , Substância Negra/metabolismo , Ubiquitina-Proteína Ligases/biossíntese , Animais , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica , Ferro/toxicidade , Macaca fascicularis/genética , Manganês/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Príons/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Teste de Desempenho do Rota-Rod , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
3.
Neurodegener Dis ; 16(5-6): 304-16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26886023

RESUMO

Mutations of parkin are a prevalent genetic contributor to familial Parkinson's disease (PD). As a key regulator of protein and mitochondrial homeostasis, parkin plays a pivotal role in maintaining dopaminergic neuronal survival. However, whereas Drosophila parkin null mutants exhibit prominent parkinsonian features, parkin-deficient mice generally lack an overt phenotype. Here, we found that the expression of Hsp70 along with several other members of the chaperone family is elevated in parkin null mice, suggesting a possible compensatory mechanism for the loss of parkin function in these mice that could have masked their phenotype. Supporting this, we demonstrate that the enhancement of chaperone function induced either pharmacologically via 17-AAG treatment or genetically via Hsp70 overexpression can protect cells against proteolytic and mitochondrial stress in a manner that is similar to that brought about by parkin overexpression. Importantly, we further showed that enhanced chaperone activity can ameliorate the pathological phenotypes in Drosophila parkin null mutants, which suggests the ability of chaperones to phenocopy parkin function. Taken together, our results suggest that Hsp members may act as compensatory factors for parkin loss of function and that the exploitation of these factors may be of potential therapeutic value.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Doença de Parkinson/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Autofagia/efeitos dos fármacos , Benzoquinonas/administração & dosagem , Linhagem Celular Tumoral , Drosophila , Humanos , Lactamas Macrocíclicas/administração & dosagem , Camundongos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo
4.
Angew Chem Int Ed Engl ; 54(37): 10821-5, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26205378

RESUMO

The design of the first dual-purpose activity-based probe of monoamine oxidase B (MAO-B) is reported. This probe is highly selective towards MAO-B, even at high MAO-A expression levels, and could sensitively report endogenous MAO-B activities by both in situ proteome profiling and live-cell bioimaging. With a built-in imaging module as part of the probe design, the probe was able to accomplish what all previously reported MAO-B imaging probes failed to do thus far: the live-cell imaging of MAO-B activities without encountering diffusion problems.


Assuntos
Sondas Moleculares , Monoaminoxidase/metabolismo , Doença de Parkinson/enzimologia , Linhagem Celular Tumoral , Humanos
5.
Ann Neurol ; 77(3): 504-16, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25558977

RESUMO

OBJECTIVE: Stroke is a leading cause of mortality and disability. The peptidyl-prolyl cis/trans isomerase Pin1 regulates factors involved in cell growth. Recent evidence has shown that Pin1 plays a major role in apoptosis. However, the role of Pin1 in ischemic stroke remains to be investigated. METHODS: We used Pin1 overexpression and knockdown to manipulate Pin1 expression and explore the effects of Pin1 in cell death on ischemic stress in vitro and in a mouse stroke model. We also used Pin 1 inhibitor, γ-secretase inhibitor, Notch1 intracellular domain (NICD1)-deleted mutant cells, and Pin1 mutant cells to investigate the underlying mechanisms of Pin1-NICD1-mediated cell death. RESULTS: Our findings indicate that Pin1 facilitates NICD1 stability and its proapoptotic function following ischemic stroke. Thus, overexpression of Pin1 increased NICD1 levels and enhanced its potentiation of neuronal death in simulated ischemia. By contrast, depletion or knockout of Pin1 reduced the NICD1 level, which in turn desensitized neurons to ischemic conditions. Pin1 interacted with NICD1 and increased its stability by inhibiting FBW7-induced polyubiquitination. We also demonstrate that Pin1 and NICD1 levels increase following stroke. Pin1 heterozygous (+/-) and knockout (-/-) mice, and also wild-type mice treated with an inhibitor of Pin1, each showed reduced brain damage and improved functional outcomes in a model of focal ischemic stroke. INTERPRETATION: These results suggest that Pin1 contributes to the pathogenesis of ischemic stroke by promoting Notch signaling, and that inhibition of Pin1 is a novel approach for treating ischemic stroke.


Assuntos
Apoptose/fisiologia , Isquemia/metabolismo , Neurônios/metabolismo , Peptidilprolil Isomerase/metabolismo , Receptor Notch1/metabolismo , Acidente Vascular Cerebral/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/patologia , Modelos Animais de Doenças , Humanos , Isquemia/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptidilprolil Isomerase/antagonistas & inibidores , Peptidilprolil Isomerase/genética , Estabilidade Proteica , Estrutura Terciária de Proteína/fisiologia , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...