Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 32(1): 101169, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38187094

RESUMO

DNA vaccines for infectious diseases and cancer have been explored for years. To date, only one DNA vaccine (ZyCoV-D) has been authorized for emergency use in India. DNA vaccines are inexpensive and long-term thermostable, however, limited by the low efficiency of intracellular delivery. The recent success of mRNA/lipid nanoparticle (LNP) technology in the coronavirus disease 2019 (COVID-19) pandemic has opened a new application for nucleic acid-based vaccines. Here, we report that plasmid encoding a trimeric spike protein with LNP delivery (pTS/LNP), similar to those in Moderna's COVID-19 vaccine, induced more effective humoral responses than naked pTS or pTS delivered via electroporation. Compared with TSmRNA/LNP, pTS/LNP immunization induced a comparable level of neutralizing antibody titers and significant T helper 1-biased immunity in mice; it also prolonged the maintenance of higher antigen-specific IgG and neutralizing antibody titers in hamsters. Importantly, pTS/LNP immunization exhibits enhanced cross-neutralizing activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and protects hamsters from the challenge of SARS-CoV-2 (Wuhan strain and the Omicron BA.1 variant). This study indicates that pDNA/LNPs as a promising platform could be a next-generation vaccine technology.

2.
Emerg Microbes Infect ; 12(2): 2249130, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37585273

RESUMO

Antigen sparing is an important strategy for pandemic vaccine development because of the limitation of worldwide vaccine production during disease outbreaks. However, several clinical studies have demonstrated that the current aluminum (Alum)-adjuvanted influenza vaccines fail to sufficiently enhance immune responses to meet licensing criteria. Here, we used pandemic H7N9 as a model virus to demonstrate that a 10-fold lower amount of vaccine antigen combined with Alum and TLR9 agonist can provide stronger protective effects than using Alum as the sole adjuvant. We found that the Alum/CpG 1018 combination adjuvant could induce more robust virus-specific humoral immune responses, including higher total IgG production, hemagglutination-inhibiting antibody activity, and neutralizing antibody titres, than the Alum-adjuvanted formulation. Moreover, this combination adjuvant shifted the immune response toward a Th1-biased immune response. Importantly, the Alum/CpG 1018-formulated vaccine could confer better protective immunity against H7N9 challenge than that adjuvanted with Alum alone. Notably, the addition of CpG 1018 to the Alum-adjuvanted H7N9 whole-virion vaccine exhibited an antigen-sparing effect without compromising vaccine efficacy. These findings have significant implications for improving Alum-adjuvanted influenza vaccines using the approved adjuvant CpG 1018 for pandemic preparedness.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Receptor Toll-Like 9 , Adjuvantes Imunológicos , Alumínio , Anticorpos Antivirais , Receptor Toll-Like 9/agonistas , Vírion
3.
J Med Virol ; 95(8): e29040, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37635380

RESUMO

Protein subunit vaccines have been used as prophylactic vaccines for a long time. The well-established properties of these vaccines make them the first choice for the coronavirus disease 2019 (COVID-19) outbreak. However, it is not easy to develop a protein vaccine that induces cytotoxic T lymphocyte responses and requires a longer time for manufacturing, which limits the usage of this vaccine type. Here, we report the combination of a recombinant spike (S)-trimer protein with a DNA vaccine-encoded S protein as a novel COVID-19 vaccine. The recombinant S protein was formulated with different adjuvants and mixed with the DNA plasmid before injection. We found that the recombinant S protein formulated with the adjuvant aluminum hydroxide and mixed with the DNA plasmid could enhance antigen-specific antibody titers, neutralizing antibody titers. We further evaluated the IgG2a/IgG1 isotype and cytokine profiles of the specific boosted T-cell response, which indicated that the combined vaccine induced a T-helper 1 cell-biased immune response. Immunized hamsters were challenged with severe acute respiratory syndrome coronavirus 2, and the body weight of the hamsters that received the recombinant S protein with aluminum hydroxide and/or the DNA plasmid was not reduced. Alternatively, those that received control or only the DNA plasmid immunization were reduced. Interestingly, after the third day of the viral load in the lungs, the viral challenge could not be detected in hamsters immunized with the recombinant S protein in aluminum hydroxide mixed with DNA (tissue culture infectious dose < 10). The viral load in the lungs was 109 , 106 , and 107 for the phosphate-buffered saline, protein in aluminum hydroxide, and DNA-only immunizations, respectively. These results indicated that antiviral mechanisms neutralizing antibodies play important roles. Furthermore, we found that the combination of protein and DNA vaccination could induce relatively strong CD8+ T-cell responses. In summary, the protein subunit vaccine combined with a DNA vaccine could induce strong CD8+ T-cell responses to increase antiviral immunity for disease control.


Assuntos
COVID-19 , Vacinas de DNA , Humanos , Animais , Cricetinae , SARS-CoV-2/genética , Hidróxido de Alumínio , Vacinas contra COVID-19 , Subunidades Proteicas , COVID-19/prevenção & controle , DNA , Imunidade Celular , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Antivirais
5.
NPJ Vaccines ; 7(1): 60, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35662254

RESUMO

A major challenge in the use of DNA vaccines is efficient DNA delivery in vivo. Establishing a safe and efficient electric transfer method is the key to developing rapid DNA vaccines against emerging infectious diseases. To overcome the complexity of designing new electric transfer machines for DNA delivery, a clinically approved electric transfer machine could be considered as an alternative. Here, we report an electroacupuncture machine-based method for DNA vaccine delivery after intramuscular injection of the COVID-19 DNA vaccine. The S gene of SARS-CoV-2 in the pVAX1 plasmid (pSARS2-S) was used as an antigen in this study. We optimized the clinically used electroacupuncture machine settings for efficient induction of the neutralizing antibody titer after intramuscular injection of pSARS2-S in mice. We found that pSARS2-S immunization at 40 Vpp for 3-5 s could induce high neutralizing antibody titers and Th1-biased immune responses. IFN-γ/TNF-α-secreting CD4+ and CD8+ T cells were also observed in the DNA vaccination group but not in the recombinant protein vaccination group. T-cell epitope mapping shows that the major reactive epitopes were located in the N-terminal domain (a.a. 261-285) and receptor-binding domain (a.a. 352-363). Importantly, pSARS2-S immunization in hamsters could induce protective immunity against SARS-CoV-2 challenge in vivo. In the preclinical toxicology study, blood biochemistry, hematology, and DNA persistence analysis reveal that the DNA delivery method is safe. Furthermore, the raised antisera could also cross-neutralize different variants of concern. These findings suggest that DNA vaccination using an electroacupuncture machine is feasible for use in humans in the future.

6.
Front Immunol ; 13: 872047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585971

RESUMO

An effective COVID-19 vaccine against broad SARS-CoV-2 variants is still an unmet need. In the study, the vesicular stomatitis virus (VSV)-based vector was used to express the SARS-CoV-2 Spike protein to identify better vaccine designs. The replication-competent of the recombinant VSV-spike virus with C-terminal 19 amino acid truncation (SΔ19 Rep) was generated. A single dose of SΔ19 Rep intranasal vaccination is sufficient to induce protective immunity against SARS-CoV-2 infection in hamsters. All the clones isolated from the SΔ19 Rep virus contained R682G mutation located at the Furin cleavage site. An additional S813Y mutation close to the TMPRSS2 cleavage site was identified in some clones. The enzymatic processing of S protein was blocked by these mutations. The vaccination of the R682G-S813Y virus produced a high antibody response against S protein and a robust S protein-specific CD8+ T cell response. The vaccinated animals were protected from the lethal SARS-CoV-2 (delta variant) challenge. The S antigen with resistance to enzymatic processes by Furin and TMPRSS2 will provide better immunogenicity for vaccine design.


Assuntos
COVID-19 , Furina , SARS-CoV-2 , Serina Endopeptidases , Animais , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19 , Furina/genética , Furina/metabolismo , Humanos , Imunidade Celular , SARS-CoV-2/imunologia , Serina Endopeptidases/genética , Serina Endopeptidases/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
7.
Front Immunol ; 12: 751883, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707615

RESUMO

A simple formulation is urgently needed for mucosal vaccine development. We employed formyl peptide receptor-like 1 inhibitory protein (FLIPr), an FcγR antagonist secreted by Staphylococcus aureus, as a vector to target ovalbumin (OVA) to dendritic cells (DCs) via intranasal administration. Our results demonstrate that intranasal administration of recombinant OVA-FLIPr fusion protein (rOVA-FLIPr) alone efficiently delivers OVA to DCs in nasal lymphoid tissue. Subsequently, OVA-specific IgG and IgA antibodies in the circulatory system and IgA antibodies in mucosal tissue were detected. Importantly, activation of OVA-specific CD4+ and CD8+ T cells and induction of a broad-spectrum cytokine secretion profile were detected after intranasal administration of rOVA-FLIPr alone in immunocompetent C57BL/6 mice. Furthermore, we employed immunodeficient AG129 mice as a Zika virus infection model and demonstrated that intranasal administration of recombinant Zika virus envelope protein domain III-FLIPr fusion protein induced protective immune responses against the Zika virus. These results suggest that antigen-FLIPr fusion protein alone via intranasal administration can be applied to mucosal vaccine development.


Assuntos
Antígenos/administração & dosagem , Proteínas de Bactérias/administração & dosagem , Ovalbumina/administração & dosagem , Proteínas Recombinantes de Fusão/administração & dosagem , Vacinação/métodos , Administração Intranasal , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Imunidade nas Mucosas , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Camundongos Endogâmicos C57BL
8.
PLoS Negl Trop Dis ; 15(5): e0009374, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34043618

RESUMO

The development of efficient vaccines against COVID-19 is an emergent need for global public health. The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major target for the COVID-19 vaccine. To quickly respond to the outbreak of the SARS-CoV-2 pandemic, a nucleic acid-based vaccine is a novel option, beyond the traditional inactivated virus vaccine or recombinant protein vaccine. Here, we report a DNA vaccine containing the spike gene for delivery via electroporation. The spike genes of SARS-CoV and SARS-CoV-2 were codon optimized for mammalian cell expression and then cloned into mammalian cell expression vectors, called pSARS-S and pSARS2-S, respectively. Spike protein expression was confirmed by immunoblotting after transient expression in HEK293T cells. After immunization, sera were collected for antigen-specific antibody and neutralizing antibody titer analyses. We found that both pSARS-S and pSARS2-S immunization induced similar levels of antibodies against S2 of SARS-CoV-2. In contrast, only pSARS2-S immunization induced antibodies against the receptor-binding domain of SARS-CoV-2. We further found that pSARS2-S immunization, but not pSARS-S immunization, could induce very high titers of neutralizing antibodies against SARS-CoV-2. We further analyzed SARS-CoV-2 S protein-specific T cell responses and found that the immune responses were biased toward Th1. Importantly, pSARS2-S immunization in hamsters could induce protective immunity against SARS-CoV-2 challenge in vivo. These data suggest that DNA vaccination could be a promising approach for protecting against COVID-19.


Assuntos
COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/normas , Animais , Chlorocebus aethiops , Cricetinae , Eletroporação , Células HEK293 , Humanos , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Plasmídeos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinas de DNA/imunologia , Células Vero
9.
Vaccines (Basel) ; 8(4)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096846

RESUMO

Peptide vaccines are safe, and aim to elicit and expand tumor-specific immunity so as to eradicate tumors. However, achieving strong and long-lasting anti-tumor immunity with peptide vaccines for the antigen-specific treatment of cancer is challenging, in part because their efficacy depends on strong adjuvants or immunomodulators. We approached this problem by conjugating an epitope-based cancer vaccine with a lipidated sequence (an immunomodulator) to elicit a strong immune response. Lipidated and non-lipidated polyepitope proteins were generated that contained the universal T helper cell epitope (pan-DR), B cell epitopes, and the extended loop sequence of extracellular domain 2 of tumor-associated antigen L6 (TAL6). We show that the lipidated polyepitope cancer vaccine can activate bone marrow-derived dendritic cells, and trigger effective antigen-specific antibody and T helper cell responses, more effectively than the non-lipidated vaccine. Moreover, potent T cell immune responses were elicited in mice inoculated with the lipidated polyepitope cancer vaccine, providing protective antitumor immunity in mice bearing TAL6 tumors. Our study demonstrates that a lipidated polyepitope cancer vaccine could be employed to generate potent anti-tumor immune responses, including humoral and cellular immunity, which could be beneficial in the treatment of TAL6+ cancer.

10.
Biomed J ; 43(4): 375-387, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32611537

RESUMO

BACKGROUND: Highly pathogenic emerging and re-emerging viruses continuously threaten lives worldwide. In order to provide prophylactic prevention from the emerging and re-emerging viruses, vaccine is suggested as the most efficient way to prevent individuals from the threat of viral infection. Nonetheless, the highly pathogenic viruses need to be handled in a high level of biosafety containment, which hinders vaccine development. To shorten the timeframe of vaccine development, the pseudovirus system has been widely applied to examine vaccine efficacy or immunogenicity in the emerging and re-emerging viruses. METHODS: We developed pseudovirus systems for emerging SARS coronavirus 2 (SARS-CoV-2) and re-emerging avian influenza virus H5 subtypes which can be handled in the biosafety level 2 facility. Through the generated pseudovirus of SARS-CoV-2 and avian influenza virus H5 subtypes, we successfully established a neutralization assay to quantify the neutralizing activity of antisera against the viruses. RESULTS: The result of re-emerging avian influenza virus H5Nx pseudoviruses provided valuable information for antigenic evolution and immunogenicity analysis in vaccine candidate selection. Together, our study assessed the potency of pseudovirus systems in vaccine efficacy, antigenic analysis, and immunogenicity in the vaccine development of emerging and re-emerging viruses. CONCLUSION: Instead of handling live highly pathogenic viruses in a high biosafety level facility, using pseudovirus systems would speed up the process of vaccine development to provide community protection against emerging and re-emerging viral diseases with high pathogenicity.


Assuntos
Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Influenza Aviária/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Vacinas Virais , Animais , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , Aves , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/prevenção & controle , Desenvolvimento de Medicamentos/métodos , Humanos , Vírus da Influenza A/imunologia , Influenza Aviária/prevenção & controle , Influenza Aviária/virologia , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , SARS-CoV-2
11.
J Biomed Sci ; 27(1): 51, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32290844

RESUMO

BACKGROUND: The emergence of Zika virus (ZV) in tropical and subtropical areas of the world has created an urgent need for vaccines against ZV. However, approved vaccines that prevent ZV infection are not available. To develop an effective vaccine against ZV infection, a lipidated form of ZV envelope protein domain III that possesses an intrinsic adjuvant property was rationally designed. Our goal was to examine the immunogenicity of recombinant lipidated ZV envelope protein domain III (rLZE3) and evaluate its potential as a vaccine candidate against ZV. METHODS: Recombinant ZV envelope protein domain III (rZE3) and rLZE3 were prepared with an Escherichia coli-based system. Dendritic cell surface marker expression and cytokine production upon stimulation were analyzed to evaluate the function of rLZE3. Neutralizing antibody capacities were evaluated using focus reduction neutralization tests after immunization. To investigate the protective immunity in immunized mice, serum samples collected from immunized mice were adoptively transferred into AG129 mice, and then viremia levels and survival times were examined after ZV challenge. RESULTS: rLZE3 alone but not rZE3 alone efficiently activated dendritic cells in vitro and was taken up by dendritic cells in vivo. Immunization of C57BL/6 mice with rLZE3 alone (without exogenous adjuvant) could induce ZV-specific neutralizing antibody responses. Furthermore, serum samples obtained from rLZE3-immunized mice provided protection as indicated by a reduction in viremia levels and prolongation of survival times after ZV challenge. CONCLUSION: These results indicate that rLZE3 is an excellent vaccine candidate and has great potential that should be evaluated in further preclinical studies.


Assuntos
Anticorpos Antivirais/imunologia , Proteínas do Envelope Viral/imunologia , Infecção por Zika virus/imunologia , Zika virus/fisiologia , Animais , Anticorpos Neutralizantes/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Domínios Proteicos/imunologia , Proteínas Recombinantes/imunologia
12.
Am J Cancer Res ; 9(9): 2028-2036, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31598403

RESUMO

Cancer vaccine design to effectively eliminate tumors requires triggering strong immune reactions to elicit long-lasting humoral and cellular immunity and DNA vaccines have been demonstrated to be an attractive immunotherapeutic approach. The tumor-associated antigen L6 (TAL6) is overexpressed on the surface of different cancer cells and promotes cancer progression; therefore, it could be a potential target for cancer treatment. We have revealed that a synthetic peptide containing HLA-A2-restricted cytotoxic T lymphocyte (CTL) and B cell epitope can induce cellular and humoral immunity against TAL6-expressing cancer. To enhance the efficacy of immunotherapy, in this report, we designed an endoplasmic reticulum (ER)-targeting sequence (adenovirus E3/19K protein) at the N-terminus of TAL6 to facilitate MHC class I antigen presentation to CD8+ T cells. Transfection of mammalian cells with the plasmid containing TAL6 fused with the ER-targeting sequence (pEKL6) resulted in higher levels of TAL6 antigens in the ER than transfection with the full-length TAL6 (pL6). The plasmid pEKL6 induced both TAL6-specific CTL responses and antibody titers after intramuscular (IM) immunization with electroporation and it elicited higher levels of antigen-specific CTLs in HLA-A2 transgenic mice. Immunization with pEKL6 induced higher levels of protective antitumor immunity against tumor growth than pL6 immunization in thymoma and melanoma tumor animal models. Notably, pEKL6 elicited long-term anti-tumor immunity against the recurrence of cancers. We found that CD4+ T, CD8+ T, and NK cells are all important for the effector mechanisms of pEKL6 immunization. Thus, cancer therapy using an ER-targeting sequence linked to a tumor antigen holds promise for treating tumors by triggering strong immune reactions.

13.
J Neurooncol ; 124(3): 403-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26239968

RESUMO

Colchicine, an anti-microtubule and antimitotic drug, is a common therapeutically agent for gout, which is thought to have potential anti-tumor effects. Owing to concerns of colchicines poisoning, the development of derivatives with low dose efficacy and less side effects is of obvious interest. In this study, we characterized the inhibitory effects of a colchicine derivative named AD1 on the cell proliferation of human malignant glioblastoma (MG) cell lines, U87MG and U373MG. We found that 50 % of U87MG and U373MG cells were reduced in the cultures after exposure to AD1 for 24 h at 10 and 50 nM, respectively. Moreover, α-tubulin immunostaining indicated that AD1 induced the disruption of the microtubule polymerization in glioma cells with apoptotic features including membrane budding/blebbing or fragmented nuclei. Increased levels of reactive oxygen species (ROS) were also detected in AD1-treated U87MG and U373MG cells compared to that observed in the control culture. Moreover, examination of microtubule-associated protein 1A/1B-light chain 3 (LC3I)/LC3II conversion and acridine orange staining for autophagic vesicles, combined with flow cytometry, showed that treatment with AD1 induced the autophagic pathway in U87MG and U373MG cells. Furthermore, we found that the intermittent intravenous administration of AD1 suppressed glioma growth in rat brain receiving intracerebral injection with rat C6 glioma cells. Taken together, our findings reveal that treatment with AD1 at nanomolar scales can reduce glioma cell viability effectively, with the occurrence of a rise in ROS and cellular autophagy. In conjunction with the observations from in vivo study, the colchicine derivative AD1 has chemotherapeutic potential to suppress glioma progression.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Colchicina/uso terapêutico , Glioblastoma/tratamento farmacológico , Animais , Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colchicina/química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Glioblastoma/patologia , Humanos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Tubulina (Proteína)/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Oncotarget ; 5(21): 10901-15, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25337721

RESUMO

We previously found that BRCA1-BRCA2-containing complex subunit 3 (BRCC3) was highly expressed in tumorigenic rat glioma cells. However, the functional role of BRCC3 in human glioma cells remains to be characterized. This study indicated that the upregulation of BRCC3 expression was induced in two human malignant glioblastoma U251 and A172 cell lines following exposure to the alkylating agent, temozolomide (TMZ). Homologous recombination (HR)-dependent DNA repair-associated genes (i.e. BRCA1, BRCA2, RAD51 and FANCD2) were also increased in U251 and A172 cells after treatment with TMZ. BRCC3 gene knockdown through lentivirus-mediated gene knockdown approach not only significantly reduced the clonogenic and migratory abilities of U251 and A172 cells, but also enhanced their sensitization to TMZ. The increase in phosphorylated H2AX foci (γH2AX) formation, an indicator of DNA damage, persisted in TMZ-treated glioma cells with stable knockdown BRCC3 expression, suggesting that BRCC3 gene deficiency is associated with DNA repair impairment. In summary, we demonstrate that by inducing DNA repair, BRCC3 renders glioma cells resistant to TMZ. The findings point to BRCC3 as a potential target for treatment of alkylating drug-resistant glioma.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Dacarbazina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/tratamento farmacológico , Proteínas de Membrana/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Dacarbazina/farmacologia , Enzimas Desubiquitinantes , Regulação para Baixo , Imunofluorescência , Glioma/metabolismo , Glioma/patologia , Humanos , Técnicas Imunoenzimáticas , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Gradação de Tumores , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Temozolomida , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...