Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9701, 2024 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678109

RESUMO

Short-cationic alpha-helical antimicrobial peptides (SCHAMPs) are promising candidates to combat the growing global threat of antimicrobial resistance. They are short-sequenced, selective against bacteria, and have rapid action by destroying membranes. A full understanding of their mechanism of action will provide key information to design more potent and selective SCHAMPs. Molecular Dynamics (MD) simulations are invaluable tools that provide detailed insights into the peptide-membrane interaction at the atomic- and meso-scale level. We use atomistic and coarse-grained MD to look into the exact steps that four promising SCHAMPs-BP100, Decoralin, Neurokinin-1, and Temporin L-take when they interact with membranes. Following experimental set-ups, we explored the effects of SCHAMPs on anionic membranes and vesicles at multiple peptide concentrations. Our results showed all four peptides shared similar binding steps, initially binding to the membrane through electrostatic interactions and then flipping on their axes, dehydrating, and inserting their hydrophobic moieties into the membrane core. At higher concentrations, fully alpha-helical peptides induced membrane budding and protrusions. Our results suggest the carpet mode of action is fit for the description of SCHAMPs lysis activity and discuss the importance of large hydrophobic residues in SCHAMPs design and activity.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Simulação de Dinâmica Molecular , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Eletricidade Estática
2.
Langmuir ; 40(13): 6949-6961, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38502024

RESUMO

Interactions of anions with hydrophobic surfaces of proteins and water-soluble polymers depend on the ability of the ions to shed their hydration shells. At positively charged surfactant monolayers, the interactions of anions are less well understood. Due to the interplay of electrostatic surface forces, hydration effects, and ion-ion interactions in the electrostatic double layer, a comprehensive microscopic picture remains elusive. Herein, we study the interactions of chloride, bromide, and a mixture of these two anions at the aqueous interface of dihexadecyldimethylammonium (DHDA+) and dioctadecyldimethylammonium (DODA+) cationic monolayers. Using molecular dynamics simulations and three surface-sensitive X-ray scattering techniques, we demonstrate that bromide interacts preferentially over chloride with both monolayers. The structure of the two monolayers and their interfacial electron density profiles obtained from the simulations quantitatively reproduce the experimental data. We observe that chloride and bromide form contact ion pairs with the quaternary ammonium groups on both monolayers. However, ion pairing with bromide leads to a greater reduction in the number of water molecules hydrating the anion, resulting in more energetically stable ion pairs. This leads to long-range (>3 nm) lateral correlations between bromide ions on the structured DODA+ monolayer. These observations indicate that ion hydration is the dominant factor determining the interfacial electrolyte structure.

3.
RSC Adv ; 12(8): 4573-4588, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35425494

RESUMO

BP100, a short antimicrobial peptide, produces membrane perturbations that depend on lipid structure and charge, salts presence, and peptide/lipid molar ratios. As membrane perturbation mechanisms are not fully understood, the atomic scale nature of peptide/membrane interactions requires a close-up view analysis. Molecular Dynamics (MD) simulations are valuable tools for describing molecular interactions at the atomic level. Here, we use MD simulations to investigate alterations in membrane properties consequent to BP100 binding to zwitterionic and anionic model membranes. We focused on membrane property changes upon peptide binding, namely membrane thickness, order parameters, surface curvature, lipid lateral diffusion and membrane hydration. In agreement with experimental results, our simulations showed that, when buried into the membrane, BP100 causes a decrease in lipid lateral diffusion and lipid acyl-chain order parameters and sharp local membrane thinning. These effects were most pronounced on the closest lipids in direct contact with the membrane-bound peptide. In DPPG and anionic-aggregate-containing DPPC/DPPG membranes, peptide flip (rotation of its non-polar facet towards the membrane interior) induced marked negative membrane curvature and enhanced the water residence half-life time in the lipid hydrophobic core and transmembrane water transport in the direction of the peptide. These results further elucidate the consequences of the initial interaction of cationic alpha-helical antimicrobial peptides with membranes.

4.
Biomolecules ; 11(4)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917850

RESUMO

In a large variety of organisms, antimicrobial peptides (AMPs) are primary defenses against pathogens. BP100 (KKLFKKILKYL-NH2), a short, synthetic, cationic AMP, is active against bacteria and displays low toxicity towards eukaryotic cells. BP100 acquires a α-helical conformation upon interaction with membranes and increases membrane permeability. Despite the volume of information available, the action mechanism of BP100, the selectivity of its biological effects, and possible applications are far from consensual. Our group synthesized a fluorescent BP100 analogue containing naphthalimide linked to its N-terminal end, NAPHT-BP100 (Naphthalimide-AAKKLFKKILKYL-NH2). The fluorescence properties of naphthalimides, especially their spectral sensitivity to microenvironment changes, are well established, and their biological activities against transformed cells and bacteria are known. Naphthalimide derived compounds are known to interact with DNA disturbing related processes as replication and transcription, and used as anticancer agents due to this property. A wide variety of techniques were used to demonstrate that NAPHT-BP100 bound to and permeabilized zwitterionic POPC and negatively charged POPC:POPG liposomes and, upon interaction, acquired a α-helical structure. Membrane surface high peptide/lipid ratios triggered complete permeabilization of the liposomes in a detergent-like manner. Membrane disruption was driven by charge neutralization, lipid aggregation, and bilayer destabilization. NAPHT-BP100 also interacted with double-stranded DNA, indicating that this peptide could also affect other cellular processes besides causing membrane destabilization. NAPHT-BP100 showed increased antibacterial and hemolytic activities, compared to BP100, and may constitute an efficient antimicrobial agent for dermatological use. By conjugating BP100 and naphthalimide DNA binding properties, NAPHT-BP100 bound to a large extent to the bacterial membrane and could more efficiently destabilize it. We also speculate that peptide could enter the bacteria cell and interact with its DNA in the cytoplasm.


Assuntos
Anti-Infecciosos/química , Lipossomos/química , Naftalimidas/química , Oligopeptídeos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Dicroísmo Circular , DNA/química , DNA/metabolismo , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Lipossomos/metabolismo , Testes de Sensibilidade Microbiana , Oligopeptídeos/síntese química , Permeabilidade/efeitos dos fármacos , Conformação Proteica em alfa-Hélice , Espectrometria de Fluorescência , Staphylococcus aureus/efeitos dos fármacos , Termodinâmica
5.
J Chem Inf Model ; 60(2): 604-610, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31790243

RESUMO

Specific ion effects in zwitterionic micelles, especially for anions, are evident in reaction kinetics, zeta potential, and critical micelle concentration measurements. However, anion adsorption to zwitterionic micelles does not produce significant changes in shape, aggregation number, or interfacial hydration. Here we used molecular dynamics simulation of systems containing sulfobetaine zwitterionic micelles of N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (DPS) and nine different salts to explore ion adsorption in terms of group dehydration. Our results, in line with those obtained for cationic micelles, showed that the adsorption degree of anions containing both hydrophobic and hydrophilic portions, i.e., hydrotropes, were correlated with the ion dehydration and were governed mainly by the hydrophobic portion dehydration upon adsorption.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Micelas , Simulação de Dinâmica Molecular , Compostos de Amônio Quaternário/química , Água/química , Adsorção , Conformação Molecular
6.
Heliyon ; 5(10): e02648, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31720452

RESUMO

Lauric acid (LAH) strongly inhibits the growth of acne-causing bacteria. LAH is essentially water-insoluble and the solubility of laurate (LA) salts are medium and temperature dependent. Hence, LAH/LA preparations are difficult to formulate. Here we fully characterized phospholipid vesicles containing up to 50 mol% LAH. Vesicles of dipalmitoylphosphatidylcholine (DPPC) containing LAH, at pHs 7.4 and 5.0, were characterized measuring size, charge, bilayer phase transition temperature (Tm) and permeability of water-soluble probes. Small angle X-ray scattering and cryotransmission electron microscopy showed multilamellar vesicles at low LAH %. Increasing LAH % had a negligible effect on particle size. An internal aqueous compartment in all vesicle's preparations, even at equimolar DPPC: LAH fractions, was demonstrated using water-soluble probes. At pH 5.0, the interaction between DPPC and LAH increased the Tm and phase transition cooperativity showing a single lipid phase formed by hydrogen-bonded DPPC: LAH complexes. At pH 7.4, vesicles containing 50 mol% LAH exhibited distinct phases, ascribed to complex formation between LAH and LA or LAH and DPPC. LAH incorporated in the vesicles minimally permeated a skin preparation at both pHs, indicating that the primary sites of LAH solubilization were the skin layers. These results provide the foundations for developing processes and products containing DPPC: LAH.

7.
Sci Rep ; 9(1): 8622, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197199

RESUMO

BP100 is a short antimicrobial peptide and can also act as a molecule-carrier into cells. Like with other antimicrobial peptides, the precise mechanism of membrane disruption is not fully understood. Here we use computer simulations to understand, at a molecular level, the initial interaction between BP100 and zwitterionic/negatively charged model membranes. In agreement with experimental results, our simulations showed BP100 folded into an alpha helix when in contact with negatively charged membranes. BP100 binding induced the aggregation of negatively charged lipids on mixed membranes composed of zwitterionic and anionic lipids. The peptide in alpha-helix conformation initially interacts with the membrane via electrostatic interactions between the negatively charged lipids and the positively charged residues of the peptide. At that point the peptide flips, burying the hydrophobic residues into the bilayer highlighting the importance of the hydrophobic effect contribution to the initial interaction of cationic antimicrobial peptides with membranes.


Assuntos
Anti-Infecciosos/farmacologia , Oligopeptídeos/farmacologia , 1,2-Dipalmitoilfosfatidilcolina/química , Anti-Infecciosos/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Oligopeptídeos/química , Fosfatidilgliceróis/química , Estrutura Secundária de Proteína , Água/química
8.
Langmuir ; 34(37): 11049-11057, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30126270

RESUMO

Zwitterionic micelles adsorb anions and several techniques were used to determine the specificity of this interaction. Although at a lower intensity, this adsorption can be compared to those observed in cationic micelles, which showed that interfacial dehydration is a fundamental property for the geometry and size of micelles. Because there is no information on the interfacial hydration of zwitterionic micelles, we used dielectric relaxation spectroscopy (DRS) together with molecular dynamics (MD) simulations to evaluate the importance of surface dehydration promoted by the binding of anions at the micellar interface (sodium bromide, sodium methanesulfonate, sodium trifluoroacetate, and sodium triflate) in N-dodecyl- N, N-dimethyl-3-ammonio-1-propanesulfonate (DPS) micelles. Our results, showing good agreement between DRS and MD simulations, strongly suggest that specific ion effects on zwitterionic micelles are unrelated to global changes in the interfacial hydration and depend on specific interactions of the headgroups with selected anions.

9.
Biochim Biophys Acta Biomembr ; 1860(8): 1502-1516, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29750913

RESUMO

Antimicrobial peptides (AMPs) work as a primary defense against pathogenic microorganisms. BP100, (KKLFKKILKYL-NH2), a rationally designed short, highly cationic AMP, acts against many bacteria, displaying low toxicity to eukaryotic cells. Previously we found that its mechanism of action depends on membrane surface charge and on peptide-to-lipid ratio. Here we present the synthesis of two BP100 analogs: BP100­alanyl­hexadecyl­1­amine (BP100-Ala-NH-C16H33) and cyclo(1­4)­d­Cys1, Ile2, Leu3, Cys4-BP100 (Cyclo(1­4)­cILC-BP100). We examined their binding to large unilamellar vesicles (LUV), conformational and functional properties, and compared with those of BP100. The analogs bound to membranes with higher affinity and a lesser dependence on electrostatic forces than BP100. In the presence of LUV, BP100 and BP100-Ala-NH-C16H33 acquired α-helical conformation, while Cyclo(1­4)­cILC-BP100) was partly α-helical and partly ß-turn. Taking in conjunction: 1. particle sizes and zeta potential, 2. effects on lipid flip-flop, 3. leakage of LUVs internal contents, and 4. optical microscopy of giant unilamellar vesicles, we concluded that at high concentrations, all three peptides acted by a carpet mechanism, while at low concentrations the peptides acted by disorganizing the lipid bilayer, probably causing membrane thinning. The higher activity and lesser membrane surface charge dependence of the analogs was probably due to their greater hydrophobicity. The MIC values of both analogs towards Gram-positive and Gram-negative bacteria were similar to those of BP100 but both analogues were more hemolytic. Confocal microscopy showed Gram-positive B. subtilis killing with concomitant extensive membrane damage suggestive of lipid clustering, or peptide-lipid aggregation. These results were in agreement with those found in model membranes.


Assuntos
Anti-Infecciosos/síntese química , Oligopeptídeos/química , Peptídeos Cíclicos/química , Sequência de Aminoácidos , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Testes de Sensibilidade Microbiana , Microscopia de Fluorescência , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Ligação Proteica , Estrutura Secundária de Proteína , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
10.
Phys Chem Chem Phys ; 19(45): 30658-30666, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29119186

RESUMO

The properties of ionic micelles depend on the nature of the counterion, and these effects become more evident as the ion adsorption at the interface increases. Prediction of the relative extent of ion adsorption is required for rational design of ionic micellar aggregates. Unlike the well understood adsorption of monatomic ions, the adsorption of polyatomic ions is not easily predicted. We combined experimental and computational methods to evaluate the affinity of hydrotropic ions, i.e., ions with polar and apolar regions, to the surface of positively charged micelles. We analyzed cationic micelles of dodecyltrimethylammonium and six hydrotropic counterions: methanesulfonate, trifluoromethanesulfonate, benzenesulfonate, acetate, trifluoroacetate and benzoate. Our results demonstrated that the apolar region of hydrotropic ions had the largest influence on micellar properties. The dehydration of the apolar region of hydrotropic ions upon their adsorption at the micellar interface determined the ion adsorption extension, differently to what was expected based on Collins' law of matching affinities. These results may lead to more general models to describe the adsorption of ions, including polyatomic ions, at the micellar interface.

11.
Biophys Rev ; 9(5): 617-631, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28852984

RESUMO

The interfaces of membranes and other aggregates are determined by the polarity, electrical charge, molecular volume, degrees of motional freedom and packing density of the head groups of the amphiphiles. These properties also determine the type of bound ion (ion selectivity) and its local density, i.e. concentration defined by choosing an appropriate volume element at the aggregate interface. Bulk and local ion concentrations can differ by orders of magnitude. The relationships between ion (or other compound) concentrations in the bulk solvent and in the interface are complex but, in some cases, well established. As the local ion concentration, rather than that in the bulk, controls a variety of properties of membranes, micelles, vesicles and other objects of theoretical and applied interests, measurement of local (interfacial, bound) ion concentrations is of relevance for understanding and characterizing such aggregates. Many experimental methods for estimating ion distributions between the bulk solution and the interface provide indirect estimates because they are based on concentration-dependent properties, rather than concentration measurements. Dediazoniation, i.e. the loss of N2, of a substituted diazophenyl derivative provides a tool for determining the number of nucleophiles (including neutral or negatively charged ions) surrounding the diazophenyl derivative prior to the dediazoniation event. This reaction, defined as chemical trapping, and the appropriate reference points obtained in bulk solution allow direct measurements of local concentrations of a variety of nucleophiles at the surface of membranes and other aggregates. Here we review our contributions of our research group to the use, and understanding, of this method and applications of chemical trapping to the description of local concentrations of ions and other nucleophiles in micelles, reverse micelles, vesicles and solvent mixtures. Among other results, we have shown that interfacial water determines micellar shape, zwitterionic vesicle-forming amphiphiles display ion selectivity and urea does not accumulate at micellar interfaces. We have also shown that reaction products can be predicted from the composition of the initial state, even in non-ideal solvent mixtures, supporting the usefulness of chemical trapping as a method to determine local concentrations. In addition, we have analysed the mechanism of dediazoniation, both on theoretical and experimental basis, and concluded that the formation of a free phenyl cation is not a necessary part of the reaction pathway.

12.
J Org Chem ; 80(17): 8637-42, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26263052

RESUMO

The dediazoniation of aryldiazonium salts in mixed solvents proceeds by a borderline SN1 and SN2 pathway, and product distribution should be proportional to the composition of the solvation shell of the carbon attached to the -N2 group (ipso carbon). The rates of dediazoniation of 2,4,6-trimethylbenzenediazonium in water, methanol, ethanol, propanol, and acetonitrile were similar, but measured product distributions were noticeably dependent on the nature of the water/cosolvent mixture. Here we demonstrated that solvent distribution in the first solvation shell of the ipso carbon, calculated from classical molecular dynamics simulations, is equal to the measured product distribution. Furthermore, we showed that regardless of the charge distribution of the initial state, i.e., whether the positive charge is smeared over the molecule or localized on phenyl moiety, the solvent distribution around the reaction center is nearly the same.

13.
Environ Sci Technol ; 49(7): 3989-96, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25730497

RESUMO

Seeking economic growth and job creation to tackle the nation's extreme poverty, the Nicaraguan government awarded a concession to build an interoceanic canal and associated projects to a recently formed Hong Kong based company with no track record or related expertise. This concession was awarded without a bidding process and in advance of any feasibility, socio-economic or environmental impact assessments; construction has begun without this information. The 278 km long interoceanic canal project may result in significant environmental and social impairments. Of particular concern are damage to Lake Cocibolca, a unique freshwater tropical lake and Central America's main freshwater reservoir; damage to regional biodiversity and ecosystems; and socio-economic impacts. Concerned about the possibly irreparable damage to the environment and to native communities, conservationists and the scientific community at large are urging the Nicaraguan government to devise and reveal an action plan to address and mitigate the possible negative repercussions of this interoceanic canal and associated projects. Critical research needs for preparation of a comprehensive benefit-cost analysis for this megaproject are presented.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Lagos , Meios de Transporte , Animais , Oceano Atlântico , Benchmarking , Desenvolvimento Econômico , Meio Ambiente , Água Doce , Humanos , Nicarágua , Oceano Pacífico , Medição de Risco , Fatores Socioeconômicos
14.
Langmuir ; 31(9): 2609-14, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25689018

RESUMO

Dodecyltrimethylammonium triflate (DTATf) micelles possess lower degree of counterion dissociation (α), lower hydration, and higher packing of monomers than other micelles of similar structure. Addition of sodium triflate ([NaTf] > 0.05 M) to DTATf solutions promotes phase separation. This phenomenon is commonly observed in oppositely charged surfactant mixtures, but it is rare for ionic surfactants and relatively simple counterions. While the properties of DTATf have already been reported, the driving forces for the observed phase separation with added salt remain unclear. Thus, we propose an interpretation for the observed phase separation in cationic surfactant solutions. Addition of up to 0.03 M NaTf to micellar DTATf solutions led to a limited increase of the aggregation number, to interface dehydration, and to a progressive decrease in α. The viscosity of DTATf solutions of higher concentration ([DTATf] ≥ 0.06 M) reached a maximum with increasing [NaTf], though the aggregation number slightly increased, and no shape change occurred. We hypothesize that this maximum results from a decrease in interaggregate repulsion, as a consequence of increased ion binding. This reduction in micellar repulsion without simultaneous infinite micellar growth is, probably, the major driving force for phase separation at higher [NaTf].

15.
Biochim Biophys Acta ; 1838(7): 1985-99, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24743023

RESUMO

The cecropin-melittin hybrid antimicrobial peptide BP100 (H-KKLFKKILKYL-NH2) is selective for Gram-negative bacteria, negatively charged membranes, and weakly hemolytic. We studied BP100 conformational and functional properties upon interaction with large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs, containing variable proportions of phosphatidylcholine (PC) and negatively charged phosphatidylglycerol (PG). CD and NMR spectra showed that upon binding to PG-containing LUVs BP100 acquires α-helical conformation, the helix spanning residues 3-11. Theoretical analyses indicated that the helix is amphipathic and surface-seeking. CD and dynamic light scattering data evinced peptide and/or vesicle aggregation, modulated by peptide:lipid ratio and PG content. BP100 decreased the absolute value of the zeta potential (ζ) of LUVs with low PG contents; for higher PG, binding was analyzed as an ion-exchange process. At high salt, BP100-induced LUVS leakage requires higher peptide concentration, indicating that both electrostatic and hydrophobic interactions contribute to peptide binding. While a gradual release took place at low peptide:lipid ratios, instantaneous loss occurred at high ratios, suggesting vesicle disruption. Optical microscopy of GUVs confirmed BP100-promoted disruption of negatively charged membranes. The mechanism of action of BP100 is determined by both peptide:lipid ratio and negatively charged lipid content. While gradual release results from membrane perturbation by a small number of peptide molecules giving rise to changes in acyl chain packing, lipid clustering (leading to membrane defects), and/or membrane thinning, membrane disruption results from a sequence of events - large-scale peptide and lipid clustering, giving rise to peptide-lipid patches that eventually would leave the membrane in a carpet-like mechanism.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Bactérias Gram-Negativas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Estrutura Secundária de Proteína , Eletricidade Estática
16.
Protein Pept Lett ; 21(5): 468-75, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24555432

RESUMO

Phosphatases for organophosphate degradation and carbohydrate-binding domains (CBMs) have potential biotechnological applications. As a proof-of-concept, a soluble chimeric protein that combines acid phosphatase (AppA) from Escherichia coli and a CBM from Xanthomonas axonopodis pv. citri (AppA-CBM) was produced in E.coli. AppACBM adsorbed in microcrystalline cellulose Avicel PH101 catalyzed the hydrolysis of p-nitrophenyl phosphate (PNPP). The binding to microcrystalline cellulose displayed saturation behavior with an apparent binding constant (Kb) of 22 ± 5 mg and a maximum binding (Bmax) of 1.500 ± 0.001 enzyme units. Binding was highest at pH 2.5 and decreased above pH 6.5, as previously observed for family 2 CBMs. The Km values for PNPP of AppA-CBM and native AppA were identical (2.7 mM). To demonstrate that this strategy for protein engineering has practical applications and is largely functional, even for phosphatases exhibiting diverse folds, a chimeric protein combining human paraoxonase 1 (hPON1) and the CBM was produced. Both PON1-CBM and hPON1 had identical Km values for paraoxon (1.3 mM). Additionally, hPON1 bound to microcrystalline cellulose with a Kb of 27 ± 3 mg, the same as that observed for AppA-CBM. These data show that the phosphatase domains are as functional in both of the chimeric proteins as they are in the native enzymes and that the CBM domain maintains the same cellulose affinity. Therefore, the engineering of chimeric proteins combining domains of phosphatases and CBMs is fully feasible, resulting in chimeric enzymes that exhibit potential for OP detoxification.


Assuntos
Arildialquilfosfatase/metabolismo , Celulose/metabolismo , Escherichia coli/enzimologia , Paraoxon/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Xanthomonas/enzimologia , Sequência de Aminoácidos , Arildialquilfosfatase/química , Arildialquilfosfatase/genética , Sítios de Ligação , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Hidrólise , Dados de Sequência Molecular , Nitrofenóis/metabolismo , Compostos Organofosforados/metabolismo , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Ligação Proteica , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Xanthomonas/genética , Xanthomonas/metabolismo
17.
Langmuir ; 30(5): 1239-49, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24467445

RESUMO

Micellar properties of dodecyltrimethylammonium triflate (DTA-triflate, DTATf) are very different from those of DTA-bromide (DTAB). DTATf aggregates show high aggregation numbers (Nagg), low degree of counterion dissociation (α), disk-like shape, high packing, ordering, and low hydration. These micellar properties and the low surface tension of NaTf aqueous solutions point to a high affinity of Tf(-) to the micellar and air/water interfaces. Although the micellar properties of DTATf are well defined, the source of the Tf(-) effect upon the DTA aggregates is unclear. Molecular dynamics (MD) simulations of Tf(-) (and Br(-)) at the air/water interface and as counterion of a DTA aggregate were performed to clarify the nature of Tf(-) preferences for these interfaces. The effect of NaTf or NaBr on surface tension calculated from MD simulations agreed with the reported experimental values. From the MD simulations a high affinity of Tf(-) toward the interface, which occurred in a specific orientation, was calculated. The micellar properties calculated from the MD simulations for DTATf and DTAB were consistent with experimental data: in MD simulations, the DTATf aggregate was more ordered, packed, and dehydrated than the DTAB aggregate. The Tf(-)/alkyltrimethylammonium interaction energies, calculated from the MD simulations, suggested ion pair formation at the micellar interface, stabilized by the preferential orientation of the adsorbed Tf(-) at the micellar interface.

18.
Langmuir ; 29(32): 10037-46, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23899188

RESUMO

The properties of ionic micelles are affected by the nature of the counterion. Specific ion effects can be dramatic, inducing even shape and phase changes in micellar solutions, transitions apparently related to micellar hydration and counterion binding at the micellar interface. Thus, determining the hydration and dynamics of ions in micellar systems capable of undergoing such transitions is a crucial step in understanding shape and phase changes. For cationic micelles, such transitions are common with large organic anions as counterions. Interestingly, however, phase separation also occurs for dodecyltrimethylammonium triflate (DTATf) micelles in the presence of sodium triflate (NaTf). Specific ion effects for micellar solutions of dodecyltrimethylammonium chloride (DTAC), bromide (DTAB), methanesulfonate (DTAMs), and triflate (DTATf) were studied with dielectric relaxation spectroscopy (DRS), a technique capable of monitoring hydration and counterion dynamics of micellar aggregates. In comparison to DTAB, DTAC, and DTAMs, DTATf micelles were found to be considerably less hydrated and showed reduced counterion mobility at the micellar interface. The obtained DTATf and DTAMs data support the reported central role of the anion's -CF3 moiety with respect to the properties of DTATf micelles. The reduced hydration observed for DTATf micelles was rationalized in terms of the higher packing of this surfactant compared to that of other DTA-based systems. The decreased mobility of Tf(-) anions condensed at the DTATf interface strongly suggests the insertion of Tf(-) in the micellar interface, which is apparently driven by the strong hydrophobicity of -CF3.


Assuntos
Espectroscopia Dielétrica , Mesilatos/química , Compostos de Amônio Quaternário/química , Micelas , Estrutura Molecular , Água/química
19.
Langmuir ; 29(13): 4193-203, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23473070

RESUMO

Specific ion effects in surfactant solutions affect the properties of micelles. Dodecyltrimethylammonium chloride (DTAC), bromide (DTAB), and methanesulfonate (DTAMs) micelles are typically spherical, but some organic anions can induce shape or phase transitions in DTA(+) micelles. Above a defined concentration, sodium triflate (NaTf) induces a phase separation in dodecyltrimethylammonium triflate (DTATf) micelles, a phenomenon rarely observed in cationic micelles. This unexpected behavior of the DTATf/NaTf system suggests that DTATf aggregates have unusual properties. The structural properties of DTATf micelles were analyzed by time-resolved fluorescence quenching, small-angle X-ray scattering, nuclear magnetic resonance, and electron paramagnetic resonance and compared with those of DTAC, DTAB, and DTAMs micelles. Compared to the other micelle types, the DTATf micelles had a higher average number of monomers per aggregate, an uncommon disk-like shape, smaller interfacial hydration, and restricted monomer chain mobility. Molecular dynamic simulations supported these observations. Even small water-soluble salts can profoundly affect micellar properties; our data demonstrate that the -CF3 group in Tf(-) was directly responsible for the observed shape changes by decreasing interfacial hydration and increasing the degree of order of the surfactant chains in the DTATf micelles.


Assuntos
Mesilatos/química , Micelas , Compostos de Amônio Quaternário/química , Cátions/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Tensoativos/química
20.
J Colloid Interface Sci ; 371(1): 62-72, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22305573

RESUMO

Interfacial concentrations of chloride and bromide ions, with Li(+), Na(+), K(+), Rb(+), Cs(+), trimethylammonium (TMA(+)), Ca(2+), and Mg(2+) as counterions, were determined by chemical trapping in micelles formed by two zwitterionic surfactants, namely N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and hexadecylphosphorylcholine (HDPC) micelles. Appropriate standard curves for the chemical trapping method were obtained by measuring the product yields of chloride and bromide salts with 2,4,6-trimethyl-benzenediazonium (BF(4)) in the presence of low molecular analogs (N,N,N-trimethyl-propane sulfonate and methyl-phosphorylcholine) of the employed surfactants. The experimentally determined values for the local Br(-) (Cl(-)) concentrations were modeled by fully integrated non-linear Poisson Boltzmann equations. The best fits to all experimental data were obtained by considering that ions at the interface are not fixed at an adsorption site but are free to move in the interfacial plane. In addition, the calculation of ion distribution allowed the estimation of the degree of ion coverage by using standard chemical potential differences accounting for ion specificity.


Assuntos
Brometos/química , Cloretos/química , Micelas , Modelos Teóricos , Tensoativos/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...