Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Clin Pharmacol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715387

RESUMO

AIMS: Benralizumab, a humanized, afucosylated monoclonal antibody against the interleukin 5 receptor, α subunit, causes rapid depletion of eosinophils by antibody-dependent cellular cytotoxicity. We investigated the pharmacokinetic and pharmacodynamic effects of benralizumab in patients with chronic rhinosinusitis with nasal polyps (CRSwNP) from the phase III OSTRO trial. METHODS: Patients received a placebo or 30 mg of benralizumab by subcutaneous injection every 8 weeks (first three doses every 4 weeks) to week 48; a subset of patients continued in an extended follow-up period to assess treatment durability to week 80. Serum benralizumab concentrations and blood eosinophil and basophil counts were assessed to week 80. Biomarker assessments were performed on nasal polyp tissue biopsies at week 56 and nasal lining fluid at weeks 24 and 56 to examine changes in immune cells and inflammatory mediators. RESULTS: Among 185 patients in this analysis, 93 received benralizumab. Serum benralizumab concentrations reached a steady state by week 24 (median concentration 385.52 ng mL-1); blood eosinophils were almost fully depleted and blood basophils were reduced between weeks 16 and 56. Nasal polyp tissue eosinophils decreased with benralizumab from 57.6 cells mm-2 at baseline to 0 cells mm-2 at week 56 (P < .001 vs placebo), and tissue mast cells were numerically reduced. In nasal lining fluid, eosinophil-derived neurotoxin was significantly reduced at weeks 24 and 56 (P < .001) and interleukin-17 at week 56 (P < .05) with benralizumab. CONCLUSION: Benralizumab treatment led to rapid, sustained, nearly complete depletion of eosinophils from blood and nasal polyp tissue in patients with CRSwNP.

2.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966111

RESUMO

Prostate cancer is generally considered an immunologically "cold" tumor type that is insensitive to immunotherapy. Targeting surface antigens on tumors through cellular therapy can induce a potent antitumor immune response to "heat up" the tumor microenvironment. However, many antigens expressed on prostate tumor cells are also found on normal tissues, potentially causing on-target, off-tumor toxicities and a suboptimal therapeutic index. Our studies revealed that six-transmembrane epithelial antigen of prostate-2 (STEAP2) was a prevalent prostate cancer antigen that displayed high, homogeneous cell surface expression across all stages of disease with limited distal normal tissue expression, making it ideal for therapeutic targeting. A multifaceted lead generation approach enabled development of an armored STEAP2 chimeric antigen receptor T cell (CAR-T) therapeutic candidate, AZD0754. This CAR-T product was armored with a dominant-negative TGF-ß type II receptor, bolstering its activity in the TGF-ß-rich immunosuppressive environment of prostate cancer. AZD0754 demonstrated potent and specific cytotoxicity against antigen-expressing cells in vitro despite TGF-ß-rich conditions. Further, AZD0754 enforced robust, dose-dependent in vivo efficacy in STEAP2-expressing cancer cell line-derived and patient-derived xenograft mouse models, and exhibited encouraging preclinical safety. Together, these data underscore the therapeutic tractability of STEAP2 in prostate cancer as well as build confidence in the specificity, potency, and tolerability of this potentially first-in-class CAR-T therapy.


Assuntos
Neoplasias da Próstata , Receptores de Antígenos Quiméricos , Masculino , Humanos , Camundongos , Animais , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva , Neoplasias da Próstata/patologia , Linfócitos T , Fator de Crescimento Transformador beta/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Microambiente Tumoral , Oxirredutases/metabolismo
3.
Clin Proteomics ; 20(1): 47, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880622

RESUMO

BACKGROUND: Quantification of drug-target binding is critical for confirming that drugs reach their intended protein targets, understanding the mechanism of action, and interpreting dose-response relationships. For covalent inhibitors, target engagement can be inferred by free target levels before and after treatment. Targeted mass spectrometry assays offer precise protein quantification in complex biological samples and have been routinely applied in pre-clinical studies to quantify target engagement in frozen tumor tissues for oncology drug development. However, frozen tissues are often not available from clinical trials so it is critical that assays are applicable to formalin-fixed, paraffin-embedded (FFPE) tissues in order to extend mass spectrometry-based target engagement studies into clinical settings. METHODS: Wild-type RAS and RASG12C was quantified in FFPE tissues by a highly optimized targeted mass spectrometry assay that couples high-field asymmetric waveform ion mobility spectrometry (FAIMS) and parallel reaction monitoring (PRM) with internal standards. In a subset of samples, technical reproducibility was evaluated by analyzing consecutive tissue sections from the same tumor block and biological variation was accessed among adjacent tumor regions in the same tissue section. RESULTS: Wild-type RAS protein was measured in 32 clinical non-small cell lung cancer tumors (622-2525 amol/µg) as measured by FAIMS-PRM mass spectrometry. Tumors with a known KRASG12C mutation (n = 17) expressed a wide range of RASG12C mutant protein (127-2012 amol/µg). The variation in wild-type RAS and RASG12C measurements ranged 0-18% CV across consecutive tissue sections and 5-20% CV among adjacent tissue regions. Quantitative target engagement was then demonstrated in FFPE tissues from 2 xenograft models (MIA PaCa-2 and NCI-H2122) treated with a RASG12C inhibitor (AZD4625). CONCLUSIONS: This work illustrates the potential to expand mass spectrometry-based proteomics in preclinical and clinical oncology drug development through analysis of FFPE tumor biopsies.

4.
Lupus Sci Med ; 10(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36717181

RESUMO

OBJECTIVE: Lupus nephritis (LN) is diagnosed by biopsy, but longitudinal monitoring assessment methods are needed. Here, in this preliminary and hypothesis-generating study, we evaluate the potential for using urine proteomics as a non-invasive method to monitor disease activity and damage. Urinary biomarkers were identified and used to develop two novel algorithms that were used to predict LN activity and chronicity. METHODS: Baseline urine samples were collected for four cohorts (healthy donors (HDs, n=18), LN (n=42), SLE (n=17) or non-LN kidney disease biopsy control (n=9)), and over 1 year for patients with LN (n=42). Baseline kidney biopsies were available for the LN (n=46) and biopsy control groups (n=9). High-throughput proteomics platforms were used to identify urinary analytes ≥1.5 SD from HD means, which were subjected to stepwise, univariate and multivariate logistic regression modelling to develop predictive algorithms for National Institutes of Health Activity Index (NIH-AI)/National Institutes of Health Chronicity Index (NIH-CI) scores. Kidney biopsies were analysed for macrophage and neutrophil markers using immunohistochemistry (IHC). RESULTS: In total, 112 urine analytes were identified from LN, SLE and biopsy control patients as both quantifiable and overexpressed compared with HDs. Regression analysis identified proteins associated with the NIH-AI (n=30) and NIH-CI (n=26), with four analytes common to both groups, demonstrating a difference in the mechanisms associated with NIH-AI and NIH-CI. Pathway analysis of the NIH-AI and NIH-CI analytes identified granulocyte-associated and macrophage-associated pathways, and the presence of these cells was confirmed by IHC in kidney biopsies. Four markers each for the NIH-AI and NIH-CI were identified and used in the predictive algorithms. The NIH-AI algorithm sensitivity and specificity were both 93% with a false-positive rate (FPR) of 7%. The NIH-CI algorithm sensitivity was 88%, specificity 96% and FPR 4%. The accuracy for both models was 93%. CONCLUSIONS: Longitudinal predictions suggested that patients with baseline NIH-AI scores of ≥8 were most sensitive to improvement over 6-12 months. Viable approaches such as this may enable the use of urine samples to monitor LN over time.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Estados Unidos , Humanos , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/patologia , Rim/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Biomarcadores/urina , Biópsia
5.
Sci Rep ; 12(1): 13876, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974054

RESUMO

Mass spectrometry-based targeted proteomics allows objective protein quantitation of clinical biomarkers from a single section of formalin-fixed, paraffin-embedded (FFPE) tumor tissue biopsies. We combined high-field asymmetric waveform ion mobility spectrometry (FAIMS) and parallel reaction monitoring (PRM) to increase assay sensitivity. The modular nature of the FAIMS source allowed direct comparison of the performance of FAIMS-PRM to PRM. Limits of quantitation were determined by spiking synthetic peptides into a human spleen matrix. In addition, 20 clinical samples were analyzed using FAIMS-PRM and the quantitation of HER2 was compared with that obtained with the Ventana immunohistochemistry assay. FAIMS-PRM improved the overall signal-to-noise ratio over that from PRM and increased assay sensitivity in FFPE tissue analysis for four (HER2, EGFR, cMET, and KRAS) of five proteins of clinical interest. FAIMS-PRM enabled sensitive quantitation of basal HER2 expression in breast cancer samples classified as HER2 negative by immunohistochemistry. Furthermore, we determined the degree of FAIMS-dependent background reduction and showed that this correlated with an improved lower limit of quantitation with FAIMS. FAIMS-PRM is anticipated to benefit clinical trials in which multiple biomarker questions must be addressed and the availability of tumor biopsy samples is limited.


Assuntos
Neoplasias da Mama , Proteômica , Biópsia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Espectrometria de Mobilidade Iônica/métodos , Proteínas/química , Proteômica/métodos
6.
Anal Chem ; 93(40): 13434-13440, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34591457

RESUMO

Mass spectrometry-based targeted proteomics employs heavy isotope-labeled proteins or peptides as standards to improve accuracy and precision. The input sample amount is often determined by the total quantity of endogenous proteins or peptides, as defined by spectrophotometric assays, before the heavy-isotope standards are spiked into the samples. Errors in spectrophotometric measurements, which may be due to low sensitivity or chemical or biological interference, have a direct impact on the quantitative mass spectrometry results. Currently used targeted proteomics workflows cannot identify or correct deviations that arise from differences in the input sample amount. We have developed a workflow, global extraction from parallel reaction monitoring (PRM), to identify and quantify thousands of background peptides that are inherently acquired by PRM experiments. These background peptides were used to identify differences in the input sample amount and to reduce this variance by intensity-based, post-acquisition normalization. This approach was then applied to a xenograft study to improve the quantification of human proteins in the presence of mouse tissue contamination. In addition, these background peptides also provided a direct source of quality control metrics related to sample handling and preparation.


Assuntos
Peptídeos , Proteômica , Animais , Espectrometria de Massas , Camundongos , Proteínas , Controle de Qualidade
7.
Obesity (Silver Spring) ; 19(10): 1923-34, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21799481

RESUMO

Cannabinoid receptor CB1 is expressed abundantly in the brain and presumably in the peripheral tissues responsible for energy metabolism. It is unclear if the antiobesity effects of rimonabant, a CB1 antagonist, are mediated through the central or the peripheral CB1 receptors. To address this question, we generated transgenic mice with central nervous system (CNS)-specific knockdown (KD) of CB1, by expressing an artificial microRNA (AMIR) under the control of the neuronal Thy1.2 promoter. In the mutant mice, CB1 expression was reduced in the brain and spinal cord, whereas no change was observed in the superior cervical ganglia (SCG), sympathetic trunk, enteric nervous system, and pancreatic ganglia. In contrast to the neuronal tissues, CB1 was undetectable in the brown adipose tissue (BAT) or the liver. Consistent with the selective loss of central CB1, agonist-induced hypothermia was attenuated in the mutant mice, but the agonist-induced delay of gastrointestinal transit (GIT), a primarily peripheral nervous system-mediated effect, was not. Compared to wild-type (WT) littermates, the mutant mice displayed reduced body weight (BW), adiposity, and feeding efficiency, and when fed a high-fat diet (HFD), showed decreased plasma insulin, leptin, cholesterol, and triglyceride levels, and elevated adiponectin levels. Furthermore, the therapeutic effects of rimonabant on food intake (FI), BW, and serum parameters were markedly reduced and correlated with the degree of CB1 KD. Thus, KD of CB1 in the CNS recapitulates the metabolic phenotype of CB1 knockout (KO) mice and diminishes rimonabant's efficacy, indicating that blockade of central CB1 is required for rimonabant's antiobesity actions.


Assuntos
Fármacos Antiobesidade/farmacologia , Peso Corporal/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Ingestão de Energia/efeitos dos fármacos , Obesidade/metabolismo , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Adiponectina/sangue , Adiposidade/efeitos dos fármacos , Adiposidade/genética , Animais , Fármacos Antiobesidade/uso terapêutico , Biomarcadores/sangue , Peso Corporal/genética , Sistema Nervoso Central/efeitos dos fármacos , Colesterol/sangue , Dieta Hiperlipídica/efeitos adversos , Ingestão de Energia/genética , Trânsito Gastrointestinal/fisiologia , Hipotermia/prevenção & controle , Insulina/sangue , Leptina/sangue , Camundongos , Camundongos Knockout , Camundongos Transgênicos , MicroRNAs , Mutação , Obesidade/tratamento farmacológico , Obesidade/genética , Sistema Nervoso Periférico/efeitos dos fármacos , Sistema Nervoso Periférico/metabolismo , Fenótipo , Piperidinas/uso terapêutico , Regiões Promotoras Genéticas , Pirazóis/uso terapêutico , Receptor CB1 de Canabinoide/genética , Rimonabanto , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...