Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rice (N Y) ; 13(1): 5, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31993780

RESUMO

Genome editing tools have greatly facilitated the functional analysis of genes of interest by targeted mutagenesis. Many usable genome editing tools, including different site-specific nucleases and editor databases that allow single-nucleotide polymorphisms (SNPs) to be introduced at a given site, are now available. These tools can be used to generate high allelic diversity at a given locus to facilitate gene function studies, including examining the role of a specific protein domain or a single amino acid. We compared the effects, efficiencies and mutation types generated by our LbCPF1, SpCAS9 and base editor (BECAS9) constructs for the OsCAO1 gene. SpCAS9 and LbCPF1 have similar efficiencies in generating mutations but differ in the types of mutations induced, with the majority of changes being single-nucleotide insertions and short deletions for SpCAS9 and LbCPF1, respectively. The proportions of heterozygotes also differed, representing a majority in our LbCPF1, while with SpCAS9, we obtained a large number of biallelic mutants. Finally, we demonstrated that it is possible to specifically introduce stop codons using the BECAS9 with an acceptable efficiency of approximately 20%. Based on these results, a rational choice among these three alternatives may be made depending on the type of mutation that one wishes to introduce, the three systems being complementary. SpCAS9 remains the best choice to generate KO mutations in primary transformants, while if the desired gene mutation interferes with regeneration or viability, the use of our LbCPF1 construction will be preferred, because it produces mainly heterozygotes. LbCPF1 has been described in other studies as being as effective as SpCAS9 in generating homozygous and biallelic mutations. It will remain to be clarified in the future, whether the different LbCFP1 constructions have different efficiencies and determine the origin of these differences. Finally, if one wishes to specifically introduce stop codons, BECAS9 is a viable and efficient alternative, although it has a lower efficiency than SpCAS9 and LbCPF1 for creating KO mutations.

2.
Plant Physiol ; 174(4): 2409-2418, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28626008

RESUMO

The roles of potassium channels from the Shaker family in stomatal movements have been investigated by reverse genetics analyses in Arabidopsis (Arabidopsis thaliana), but corresponding information is lacking outside this model species. Rice (Oryza sativa) and other cereals possess stomata that are more complex than those of Arabidopsis. We examined the role of the outward Shaker K+ channel gene OsK5.2. Expression of the OsK5.2 gene (GUS reporter strategy) was observed in the whole stomatal complex (guard cells and subsidiary cells), root vasculature, and root cortex. In stomata, loss of OsK5.2 functional expression resulted in lack of time-dependent outward potassium currents in guard cells, higher rates of water loss through transpiration, and severe slowdown of stomatal closure. In line with the expression of OsK5.2 in the plant vasculature, mutant plants displayed a reduced K+ translocation from the root system toward the leaves via the xylem. The comparison between rice and Arabidopsis show that despite the strong conservation of Shaker family in plants, substantial differences can exist between the physiological roles of seemingly orthologous genes, as xylem loading depends on SKOR and stomatal closure on GORK in Arabidopsis, whereas both functions are executed by the single OsK5.2 Shaker in rice.


Assuntos
Canais Iônicos/metabolismo , Oryza/metabolismo , Exsudatos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Estômatos de Plantas/metabolismo , Potássio/metabolismo , Xilema/metabolismo , Arabidopsis , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Canais Iônicos/genética , Cinética , Mutação/genética , Técnicas de Patch-Clamp , Filogenia , Proteínas de Plantas/genética , Brotos de Planta/metabolismo , Estômatos de Plantas/citologia , Transpiração Vegetal/fisiologia , Água
3.
BMC Plant Biol ; 8: 14, 2008 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18230166

RESUMO

BACKGROUND: Cultivated peanut, Arachis hypogaea is an allotetraploid of recent origin, with an AABB genome. In common with many other polyploids, it seems that a severe genetic bottle-neck was imposed at the species origin, via hybridisation of two wild species and spontaneous chromosome duplication. Therefore, the study of the genome of peanut is hampered both by the crop's low genetic diversity and its polyploidy. In contrast to cultivated peanut, most wild Arachis species are diploid with high genetic diversity. The study of diploid Arachis genomes is therefore attractive, both to simplify the construction of genetic and physical maps, and for the isolation and characterization of wild alleles. The most probable wild ancestors of cultivated peanut are A. duranensis and A. ipaënsis with genome types AA and BB respectively. RESULTS: We constructed and characterized two large-insert libraries in Bacterial Artificial Chromosome (BAC) vector, one for each of the diploid ancestral species. The libraries (AA and BB) are respectively c. 7.4 and c. 5.3 genome equivalents with low organelle contamination and average insert sizes of 110 and 100 kb. Both libraries were used for the isolation of clones containing genetically mapped legume anchor markers (single copy genes), and resistance gene analogues. CONCLUSION: These diploid BAC libraries are important tools for the isolation of wild alleles conferring resistances to biotic stresses, comparisons of orthologous regions of the AA and BB genomes with each other and with other legume species, and will facilitate the construction of a physical map.


Assuntos
Arachis/genética , Cromossomos Artificiais Bacterianos , Diploide , Genoma de Planta , DNA de Plantas/química , DNA de Plantas/genética , Eletroforese em Gel de Campo Pulsado , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...