Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Vaccin Immunother ; 17(8): 2793-2807, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33861177

RESUMO

Dengue virus (DENV) is a mosquito-borne virus that poses an incomparable public health problem, particularly in tropical and subtropical areas. Vaccination remains the most rational measure for controlling DENV infection. In this study, an ultraviolet irradiation (UV)-inactivated DENV-2 carried by N,N,N-trimethyl chitosan nanoparticles (UV-inactivated DENV2 TMC NPs) was investigated as a potential non-replicating dengue vaccine candidate. Using a human ex vivo model, the human monocyte-derived dendritic cells (MoDCs), we showed that TMC served as both a vaccine vehicle and a potent adjuvant. TMC NPs not only efficiently enhanced UV-inactivated DENV2 internalization into MoDCs but also greatly increased the breadth of UV-inactivated DENV2 immunogenicity to drive the maturation of MoDCs. Moreover, UV-inactivated DENV2 TMC NPs were highly immunogenic in mice, inducing greater levels of antibodies (total IgG, IgG1, IgG2a and neutralizing antibodies) and T cells (activated CD4⁺ and CD8⁺ T cells) against DENV-2 compared to soluble DENV-2 immunogens. Notably, the neutralizing activity of sera from mice immunized with UV-inactivated DENV2 TMC NPs was significantly augmented in the presence of complement activation, leading to the strong elimination of both DENV-2 particles and infected cells. We further showed that the immunogenicity of an inactivated dengue-based vaccine was significantly improved in a concentration-dependent manner. These positive results warrant further investigations of this platform of vaccine delivery for tetravalent vaccines or monovalent vaccines in sequential immunizations.


Assuntos
Quitosana , Vacinas contra Dengue , Vírus da Dengue , Dengue , Nanopartículas , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Dengue/prevenção & controle , Camundongos , Vacinas de Produtos Inativados
2.
PLoS One ; 15(8): e0237218, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760143

RESUMO

Influenza is an infectious respiratory illness caused by influenza viruses. Despite yearly updates, the efficacy of influenza vaccines is significantly curtailed by the virus antigenic drift and antigenic shift. These constant changes to the influenza virus make-up also challenge the development of a universal flu vaccine, which requires conserved antigenic regions shared by influenza viruses of different subtypes. We propose that it is possible to bypass these challenges by the development of an influenza vaccine based on conserved proteins delivered in an adjuvanted nanoparticle system. In this study, we generated influenza nanoparticle constructs using trimethyl chitosan nanoparticles (TMC nPs) as the carrier of recombinant influenza hemagglutinin subunit 2 (HA2) and nucleoprotein (NP). The purified HA2 and NP recombinant proteins were encapsulated into TMC nPs to form HA2-TMC nPs and NP-TMC nPs, respectively. Primary human intranasal epithelium cells (HNEpCs) were used as an in vitro model to measure immunity responses. HA2-TMC nPs, NP-TMC nPs, and HA2-NP-TMC nPs (influenza nanoparticle constructs) showed no toxicity in HNEpCs. The loading efficiency of HA2 and NP into the TMC nPs was 97.9% and 98.5%, respectively. HA2-TMC nPs and NP-TMC nPs more efficiently delivered HA2 and NP proteins to HNEpCs than soluble HA2 and NP proteins alone. The induction of various cytokines and chemokines was more evident in influenza nanoparticle construct-treated HNEpCs than in soluble protein-treated HNEpCs. In addition, soluble factors secreted by influenza nanoparticle construct-treated HNEpCs significantly induced MoDCs maturation markers (CD80, CD83, CD86 and HLA-DR), as compared to soluble factors secreted by protein-treated HNEpCs. HNEpCs treated with the influenza nanoparticle constructs significantly reduced influenza virus replication in an in vitro challenge assay. The results indicate that TMC nPs can be used as influenza vaccine adjuvants and carriers capable of delivering HA2 and NP proteins to HNEpCs.


Assuntos
Adjuvantes Imunológicos/farmacologia , Quitosana/farmacologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/farmacologia , Influenza Humana/prevenção & controle , Adjuvantes Imunológicos/administração & dosagem , Animais , Linhagem Celular , Células Cultivadas , Quitosana/administração & dosagem , Cães , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/farmacologia , Humanos , Vacinas contra Influenza/administração & dosagem , Influenza Humana/imunologia , Células Madin Darby de Rim Canino , Nanopartículas/administração & dosagem , Proteínas do Nucleocapsídeo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas de Ligação a RNA/administração & dosagem , Proteínas de Ligação a RNA/farmacologia , Proteínas do Core Viral/administração & dosagem , Proteínas do Core Viral/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA