Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Res (Camb) ; 13(4): tfae117, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39100858

RESUMO

Aim: This study is primarily designed to investigate the potential neuroprotective effects of polyphenol against 6-OHDAcaused neurotoxicity on SH-SY5Y cells. Materials and Methods: Cytotoxic effect of 6-OHDA and valuable role of quercetin, myricetin and kaempferol on SH-SY5Y cells were analyzed by MTT assay. Generation of 6-OHDA-stimulated reactive oxygen species (ROS) was measured using DCFDA fluorescence dye. Alteration of 6-OHDA-caused mitochondrial membrane potential and nuclear condensation was investigated with the help of rhodamine-123 and hoechest stain. Immunoblotting was performed to detect the expression level of 6-OHDA-caused alpha-synuclein (á-syn), Bcl-2 associated protein X (BAX), caspase 3, cleaved Poly ADP - ribose polymerase (PARP) and Bcell lymphoma 2 proteins (Bcl-2). Result: Through MTT assay, quercetin was selected over myricetin and kaempferol to counter 6-OHDA-caused cell death. The research delves into unraveling the intricate mechanisms underlying 6-OHDA-induced neurotoxicity, encompassing alterations in cellular morphology, escalation of oxidative stress, perturbation in mitochondrial membrane potential, and nuclear condensation. Exposure to 6-OHDA is implicated in the upregulation of á-syn protein, contributing to the aggravation of neurotoxicity. Concurrently, 6-OHDA orchestrates the apoptotic pathway by upregulating the expression of proapoptotic proteins such as BAX, caspase 3, and PARP, while down regulating the expression of the Bcl-2, affirming its role in apoptosis induction. Quercetin demonstrated ability to attenuate the expression of á-syn in the presence of 6-OHDA-caused injury in SH-SY5Y cells. Conclusion: Taken together, these findings collectively underscore the therapeutic potential of quercetin as a promising agent against neurotoxicity caused by 6-OHDA.

2.
Arch Microbiol ; 206(8): 362, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066800

RESUMO

Mercury (Hg) is one of the most potent toxic heavy metals that distresses livestock, humans, and ecological health. Owing to uncontrolled exposure to untreated tannery industrial effluents, metals such as Hg are increasing in nature and are, therefore, becoming a global concern. As a result, understanding the thriving microflora in that severe condition and their characteristics becomes immensely important. During the course of this study, two Hg-resistant bacteria were isolated from tannery wastewater effluents from leather factories in Kolkata, India, which were able to tolerate 2.211 × 10- 3 M (600 µg/ml) Hg. 16 S rDNA analysis revealed strong sequence homology with Citrobacter freundii, were named as BNC22A and BNC22C for this study. In addition they showed high tolerance to nickel (Ni) and Chromium (Cr) at 6.31 × 10- 3 M (1500 µg/ml) and 6.792 × 10- 3 M (2000 µg/ml) respectively. However, both the isolates were sensitive to arsenic (As) and cadmium (Cd). Furthermore, their antibiotic sensitivity profiles reveal a concerning trend towards resistance to multiple drugs. Overuse and misuse of antibiotics in healthcare systems and agriculture has been identified as two of the main reasons for the decline in efficacy of antibiotics. Though their ability to produce lipase makes them industrially potent organisms, their competence to resist several antibiotics and metals that are toxic makes this study immensely relevant. In addition, their ability to negate heavy metal toxicity makes them potential candidates for bioremediation. Finally, the green mung bean seed germination test showed a significant favourable effect of BNC22A and BNC22C against Hg-stimulated toxicity.


Assuntos
Antibacterianos , Citrobacter freundii , Farmacorresistência Bacteriana Múltipla , Resíduos Industriais , Mercúrio , Testes de Sensibilidade Microbiana , Águas Residuárias , Citrobacter freundii/isolamento & purificação , Citrobacter freundii/efeitos dos fármacos , Citrobacter freundii/genética , Índia , Mercúrio/metabolismo , Mercúrio/farmacologia , Águas Residuárias/microbiologia , Antibacterianos/farmacologia , Resíduos Industriais/análise , Curtume , RNA Ribossômico 16S/genética , Metais Pesados/toxicidade , Cádmio/farmacologia , Arsênio/metabolismo
3.
J Biol Chem ; 300(6): 107336, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718863

RESUMO

FtsZ, the tubulin homolog essential for bacterial cell division, assembles as the Z-ring at the division site, and directs peptidoglycan synthesis by treadmilling. It is unclear how FtsZ achieves kinetic polarity that drives treadmilling. To obtain insights into fundamental features of FtsZ assembly dynamics independent of peptidoglycan synthesis, we carried out structural and biochemical characterization of FtsZ from the cell wall-less bacteria, Spiroplasma melliferum (SmFtsZ). Interestingly the structures of SmFtsZ, bound to GDP and GMPPNP respectively, were captured as domain swapped dimers. SmFtsZ was found to be a slower GTPase with a higher critical concentration (CC) compared to Escherichia coli FtsZ (EcFtsZ). In FtsZs, a conformational switch from R-state (close) to T-state (open) favors polymerization. We identified that Phe224, located at the interdomain cleft of SmFtsZ, is crucial for R- to T-state transition. SmFtsZF224M exhibited higher GTPase activity and lower CC, whereas the corresponding EcFtsZM225F resulted in cell division defects in E. coli. Our results demonstrate that relative rotation of the domains is a rate-limiting step of polymerization. Our structural analysis suggests that the rotation is plausibly triggered upon addition of a GTP-bound monomer to the filament through interaction of the preformed N-terminal domain (NTD). Hence, addition of monomers to the NTD-exposed end of filament is slower in comparison to the C-terminal domain (CTD) end, thus explaining kinetic polarity. In summary, the study highlights the importance of interdomain interactions and conformational changes in regulating FtsZ assembly dynamics.


Assuntos
Proteínas de Bactérias , Proteínas do Citoesqueleto , Escherichia coli , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Domínios Proteicos , Multimerização Proteica , Guanosina Difosfato/metabolismo , Guanosina Difosfato/química , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/química , Divisão Celular
4.
Clin Cancer Res ; 29(15): 2742-2744, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37289016

RESUMO

Somatic loss-of-function RUNX1 mutations in acute myeloid leukemia (AML) include missense, nonsense, and frameshift mutations, whereas germline RUNX1 variants in RUNX1-FPDMM also include large exonic deletions. Alternative variant detection approaches revealed that large exonic deletions in RUNX1 are also common in sporadic AML, which has implications for patient stratification and therapeutic decision-making. See related article by Eriksson et al., p. 2826.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Mutação , Mutação em Linhagem Germinativa , Genômica , Leucemia Mieloide Aguda/genética
5.
Mol Biol Cell ; 34(3): ar16, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652338

RESUMO

Bacterial cell division proteins, especially the tubulin homologue FtsZ, have emerged as strong targets for developing new antibiotics. Here, we have utilized the fission yeast heterologous expression system to develop a cell-based assay to screen for small molecules that directly and specifically target the bacterial cell division protein FtsZ. The strategy also allows for simultaneous assessment of the toxicity of the drugs to eukaryotic yeast cells. As a proof-of-concept of the utility of this assay, we demonstrate the effect of the inhibitors sanguinarine, berberine, and PC190723 on FtsZ. Though sanguinarine and berberine affect FtsZ polymerization, they exert a toxic effect on the cells. Further, using this assay system, we show that PC190723 affects Helicobacter pylori FtsZ function and gain new insights into the molecular determinants of resistance to PC190723. On the basis of sequence and structural analysis and site-specific mutations, we demonstrate that the presence of salt bridge interactions between the central H7 helix and ß-strands S9 and S10 mediates resistance to PC190723 in FtsZ. The single-step in vivo cell-based assay using fission yeast enabled us to dissect the contribution of sequence-specific features of FtsZ and cell permeability effects associated with bacterial cell envelopes. Thus, our assay serves as a potent tool to rapidly identify novel compounds targeting polymeric bacterial cytoskeletal proteins like FtsZ to understand how they alter polymerization dynamics and address resistance determinants in targets.


Assuntos
Berberina , Schizosaccharomyces , Schizosaccharomyces/metabolismo , Antibacterianos/farmacologia , Proteínas do Citoesqueleto/metabolismo , Proteínas de Bactérias/metabolismo
6.
Comput Biol Chem ; 98: 107698, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35597186

RESUMO

Genomic Islands (GIs) play an important role in the evolution and adaptation of prokaryotes. The origin and extent of ecological diversity of prokaryotes can be analyzed by comparing GIs across closely or distantly related prokaryotes. Understanding the importance of GI and to study the bacterial evolution, several GI prediction tools have been generated. An unsupervised method, Design-Island, was developed to identify GIs using Monte-Carlo statistical test on randomly selected segments of a chromosome. Here, in the present study Design-Island was modified with the incorporation of majority voting, multiple hypothesis testing correction. The performance of the modified version, Design-Island-II was tested and compared with the existing GI prediction tools. The performance assessment and benchmarking of the GI prediction tools require experimentally validated dataset, which is lacking. So, different datasets, generated or taken from literature were utilized to compare the sensitivity (SN), specificity (SP), precision (PPV) and accuracy (AC) of Design-Island-II. It showed substantial enhancement in term of SN, SP, PPV and AC, and significantly reduced the computation time of the algorithm. The performance of Design-Island-II has also been compared with several GI prediction tools using curated dataset of putative horizontally transferred genes. Design-Island-II showed the highest sensitivity and F1 score, comparable specificity, precision and accuracy in comparison to the other available methods. IslandViewer4 and Islander outperformed all the available methods in terms of AC and PPV respectively. Our study suggested Design-Island-II, IslandViewer4 and GIHunter among the top performing GI prediction tools considering both sensitivity and specificity of the methods.


Assuntos
Transferência Genética Horizontal , Ilhas Genômicas , Algoritmos , Bactérias/genética , Genoma Bacteriano , Ilhas Genômicas/genética
7.
Biosci Rep ; 42(3)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35258077

RESUMO

Bacterial virulence factors are often located in their genomic islands (GIs). Helicobacter pylori, a highly diverse organism is reported to be associated with several gastrointestinal diseases like, gastritis, gastric cancer (GC), peptic ulcer, duodenal ulcer (DU) etc. A novel similarity score (Sm)-based comparative analysis with GIs of 50 H. pylori strains revealed clear idea of the various factors which promote disease progression. Two putative pathogenic GIs in some of the H. pylori strains were identified. One GI, having a putative labile enterotoxin and other dynamin-like proteins (DLPs), is predicted to increase the release of toxin by membrane vesicular formation. Another island contains a virulence-associated protein D (vapD) which is a component of a type-II toxin-antitoxin system (TAs), leads to enhance the severity of the H. pylori infection. Besides the well-known virulence factors like Cytotoxin-associated gene A (CagA) and vacA, several GIs have been identified which showed to have direct or indirect impact on H. pylori clinical outcomes. One such GI, containing lipopolysaccharide (LPS) biosynthesis genes was revealed to be directly connected with disease development by inhibiting the immune response. Another collagenase-containing GI worsens ulcers by slowing down the healing process. GI consisted of fliD operon was found to be connected to flagellar assembly and biofilm production. By residing in biofilms, bacteria can avoid antibiotic therapy, resulting in chronic infection. Along with well-studied CagA and vacuolating toxin A (vacA) virulent genes, it is equally important to study these identified virulence factors for better understanding H. pylori-induced disease prognosis.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ilhas Genômicas/genética , Genômica , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/genética , Humanos , Fatores de Virulência/genética
8.
Biol Trace Elem Res ; 200(12): 5022-5041, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35149956

RESUMO

An increase in anthropogenic activities results in metal contamination in the ecosystem which has proven to be a major health risk in humans, as they make entry into cellular organelles via agricultural products. Copper (Cu) is one such metal that acts as an essential cofactor for the activity of several enzymes, one being the cytochrome c oxidase. The increasing number of evidence suggests a substantial correlation of Cu overload with neurodegenerative disorders, including Parkinson's disease (PD). We aim to explore quercetin, a well-known polyphenol, as an alternative for combating Cu-induced toxicity in human neuroblastoma SH-SY5Y secondary cell lines. We observed that Cu increased intracellular reactive oxygen species (ROS) levels, triggered morphological deformities and condensation of nuclei, caused an imbalance in the mitochondrial membrane potential (MMP), and finally induced apoptotic cell deaths. We further investigated the effects of Cu in modulating the pro- and anti-apoptotic proteins, such as Bax, Bcl-2, etc. However, quercetin reversed these changes owing to its antioxidant and anti-apoptotic properties, resulting in autophagy induction as an outcome of upregulation of autophagosome-bound microtubules-associated protein light chain-3 (LC3II). Besides, we investigated the role of Cu in stimulating ER stress proteins, viz. PERK, CHOP, and the concomitant responses of quercetin in restoring the ER homeostasis in cellular organelles like mitochondria and ER, against Cu-induced toxic insults by modulating autophagic pathways. Overall, this research work proposes a remedial approach for Cu-mediated neurotoxicity through understanding the diverse molecular signaling inside a cell with an aim to develop effective therapeutics.


Assuntos
Estresse do Retículo Endoplasmático , Neuroblastoma , Antioxidantes/farmacologia , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Linhagem Celular Tumoral , Cobre/metabolismo , Cobre/farmacologia , Ecossistema , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/farmacologia , Proteínas de Choque Térmico/metabolismo , Humanos , Polifenóis/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quercetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
9.
Infect Genet Evol ; 85: 104445, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32615316

RESUMO

The recent pandemic of SARS-CoV-2 infection has affected more than 3.0 million people worldwide with more than 200 thousand reported deaths. The SARS-CoV-2 genome has the capability of gaining rapid mutations as the virus spreads. Whole-genome sequencing data offers a wide range of opportunities to study mutation dynamics. The advantage of an increasing amount of whole-genome sequence data of SARS-CoV-2 intrigued us to explore the mutation profile across the genome, to check the genome diversity, and to investigate the implications of those mutations in protein stability and viral transmission. We have identified frequently mutated residues by aligning ~660 SARS-CoV-2 genomes and validated in 10,000 datasets available in GISAID Nextstrain. We further evaluated the potential of these frequently mutated residues in protein structure stability of spike glycoprotein and their possible functional consequences in other proteins. Among the 11 genes, surface glycoprotein, nucleocapsid, ORF1ab, and ORF8 showed frequent mutations, while envelop, membrane, ORF6, ORF7a and ORF7b showed conservation in terms of amino acid substitutions. Combined analysis with the frequently mutated residues identified 20 viral variants, among which 12 specific combinations comprised more than 97% of the isolates considered for the analysis. Some of the mutations across different proteins showed co-occurrences, suggesting their structural and/or functional interaction among different SARS-COV-2 proteins, and their involvement in adaptability and viral transmission. Analysis of protein structure stability of surface glycoprotein mutants indicated the viability of specific variants and are more prone to be temporally and spatially distributed across the globe. A similar empirical analysis of other proteins indicated the existence of important functional implications of several variants. Identification of frequently mutated variants among COVID-19 patients might be useful for better clinical management, contact tracing, and containment of the disease.


Assuntos
Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Humanos , Modelos Moleculares , Filogenia , Conformação Proteica , Domínios Proteicos , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/genética , Sequenciamento Completo do Genoma
10.
Neurochem Res ; 45(8): 1962-1973, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32488468

RESUMO

The detrimental impact on the food chain due to the overuse of rotenone is partly responsible for alpha-synuclein (α-syn) mediated neurotoxicity. It is hypothesized that rotenone overdose leads to cytosolic proteopathy resulting in modulation of apoptosis and autophagic pathways. The aim of our study is to explore the neuroprotective role of quercetin, a beneficial polyphenol against rotenone-induced neurotoxicity in dopaminergic human SH-SY5Y cell lines. In our study we demonstrated the correlation of rotenone-induced neurotoxicity through elevation of intracellular reactive oxygen species (ROS) and imbalance in the mitochondrial membrane potential (MMP). Moreover, the morphological distortion of cell, condensation of nuclei, externalization of the inner phosphatidylserine, cleavage of caspase 3, and Poly ADP Ribose Polymerase (PARP) confirmed apoptosis. However, all these lethal effects were ameliorated by treatment of quercetin to the cells. On the other hand rotenone has a strong effect on autophagy which is a regulated degrading and recycling cellular process to remove dysfunctional proteins. Indeed, rotenone-mediated autophagy resulted in the enhancement of autophagosome-bound microtubule-associated protein light chain-3 (LC3-II) expression. Furthermore, excess accumulation of acidic vesicles was detected in presence of rotenone. Lysosome associated membrane protein (LAMP-2A) is yet another crucial protein that recruits overexpressed or misfolded proteins into the lumen of lysosome to trigger autophagy. In all cases the impact of rotenone on the cells acquired significant protection through quercetin treatment. In the present work we therefore opine the prospects of quercetin as a therapeutic candidate against neurotoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Quercetina/farmacologia , Rotenona/toxicidade , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , alfa-Sinucleína/metabolismo
11.
RNA Biol ; 17(9): 1352-1363, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32507013

RESUMO

Imbalance in lipid metabolism induces steatosis in liver during Chronic hepatitis C (CHC). Contribution of microRNAs in regulating lipid homoeostasis and liver disease progression is well established using small RNA-transcriptome data. Owing to the complexity in the development of liver diseases, the existence and functional importance of yet undiscovered regulatory miRNAs in disease pathogenesis was explored in this study using the unmapped sequences of the transcriptome data of HCV-HCC liver tissues following miRDeep2.pl pipeline. MicroRNA-c12 derived from the first intron of LGR5 of chromosome 12 was identified as one of the miRNA like sequences retrieved in this analysis that showed human specific origin. Northern blot hybridization has proved its existence in the hepatic cell line. Enrichment of premiR-c12 in dicer-deficient cells and miR-c12 in Ago2-RISC complex clearly suggested that it followed canonical miRNA biogenesis pathway and accomplished its regulatory function. Expression of this miRNA was quite low in CHC tissues than normal liver implying HCV-proteins might be regulating its biogenesis. Promoter scanning and ChIP analysis further revealed that under expression of p53 and hyper-methylation of STAT3 binding site upon HCV infection restricted its expression in CHC tissues. Centrosomal protein 350 (CEP350), which sequestered PPARα, was identified as one of the targets of miR-c12 using Miranda and validated by luciferase assay/western blot analysis. Furthermore, reduced triglyceride accumulation and enhanced PPARα mediated transcription of ß-oxidation genes upon restoration of miR-c12 in liver cells suggested its role in lipid catabolism. Thus this study is reporting miR-c12 for the first time and showed its' protective role during chronic HCV infection.


Assuntos
Ácidos Graxos/metabolismo , Hepatite C Crônica/genética , Hepatite C Crônica/metabolismo , Fígado/metabolismo , MicroRNAs/genética , Proteínas dos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , PPAR alfa/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Hepacivirus , Hepatite C Crônica/diagnóstico , Hepatite C Crônica/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Metabolismo dos Lipídeos , Fígado/virologia , MicroRNAs/química , Conformação de Ácido Nucleico , Oxirredução , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , Índice de Gravidade de Doença
12.
Int J Cancer ; 147(10): 2934-2947, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32441313

RESUMO

Diagnosis of hepatocellular carcinoma (HCC) remains challenging to clinicians, particularly in a patient with low alpha-fetoprotein. Here, in silico, ex vivo and in vitro data were combined to identify liver-specific exosomal miRNAs as an early diagnostic marker for HCC. Transcriptome profiling for mRNA and small RNA in same HCV-HCC and normal liver tissues followed by cross-validation of 41 deregulated miRNAs (log2 FoldChange > 1.5, Padj < .1) with GEO/TCGA datasets of HCV/HBV related HCC vs normal/adjacent tissue revealed three miRNAs were commonly deregulated (miR-10b/miR-21/miR-182) among all HCC irrespective of viral etiology. Targets of top deregulated miRNAs were identified by TargetScan/miRwalk and validated in mRNA transcriptome data followed by Panther/Gene Ontology enrichment/Cytoscape analysis suggested that targets were mostly from carcinogenesis pathways. Hence, those miRNAs were validated in normal and HCV-HCC tissues by qRT-PCR and subsequently in plasma-derived-exosomes of both HBV/HCV infected non-HCC (chronic hepatitis [CH]/liver cirrhosis [LC]) and HCC samples, and in liver-specific Anti-Asgr2 immuno-enriched exosomes. Exosomes were verified using Nanosight/TEM/immune-blotting with anti-Alix/anti-GRP78/anti-Asgr2. Along with miR-21-5p, miR-10b-5p/miR-221-3p/miR-223-3p was found significantly upregulated in the exosome of HCC patients than CH/non-HCC. The comparable expression pattern was seen in anti-Asgr2 immuno-precipitated exosomes. Interestingly, the AFP level was found below 250 ng/mL in about 94% of HCV-HCC and 62% of HBV-HCC patients. ROC analysis showed that miR-10b-5p + miR-221-3p + miR-223-3p + miR-21-5p could differentiate CH/non-HCC(CH + LC) from HCC with AUROC: 0.86 (97.5% CI: 0.77-0.94)/0.80 (97.5% CI: 0.70-0.89), sensitivity: 74%/58% and specificity: 86%/95% while miR-10b-5p + miR-221-3p + miR-223-3p showed AUROC: 0.84 (97.5% CI: 0.74-0.94)/0.74 (97.5% CI: 0.63-0.84), sensitivity: 86%/86% and specificity:66%/53% for low AFP-HCC vs CH/non-HCC, respectively, having better sensitivity than the combination of four miRNAs. Multivariate analysis further revealed low Albumin and high miR-21-5p as probable independent risk factor for HCC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/diagnóstico , Exossomos/genética , Neoplasias Hepáticas/diagnóstico , MicroRNAs/genética , alfa-Fetoproteínas/genética , Adulto , Idoso , Carcinoma Hepatocelular/genética , Detecção Precoce de Câncer , Chaperona BiP do Retículo Endoplasmático , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Hepáticas/genética , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA , Adulto Jovem
13.
Free Radic Biol Med ; 143: 127-139, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31351176

RESUMO

Depletion of glutathione (GSH) is considered a critical pathogenic event promoting alcohol-induced lipotoxicity. We recently show that systemic GSH deficiency in mice harboring a global disruption of the glutamate-cysteine ligase modifier subunit (Gclm) gene confers protection against alcohol-induced steatosis. While several molecular pathways have been linked to the observed hepatic protection, including nuclear factor erythroid 2-related factor 2 and AMP-activated protein kinase pathways, the precise mechanisms are yet to be defined. In this study, to gain insights into the molecular mechanisms underpinning the protective effects of loss of GCLM, global profiling of hepatic polar metabolites combined with liver microarray analysis was carried out. These inter-omics analyses revealed both low GSH- and alcohol-driven changes in multiple cellular pathways involving the metabolism of amino acids, fatty acid, glucose and nucleic acids. Notably, several metabolic changes were uniquely present in alcohol-treated Gclm-null mouse livers, including acetyl-CoA enrichment and diversion of acetyl-CoA flux from lipogenesis to alterative metabolic pathways, elevation in glutamate concentration, and induction of the glucuronate pathway and nucleotide biosynthesis. These metabolic features reflect low GSH-elicited cellular response to chronic alcohol exposure, which is beneficial for the maintenance of hepatic redox and metabolic homeostasis. The current study indicates that fine-tuning of hepatic GSH pool may evoke metabolic reprogramming to cope with alcohol-induced cellular stress.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/prevenção & controle , Glutationa/metabolismo , Fígado/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilcoenzima A/metabolismo , Animais , Etanol , Ácidos Graxos/metabolismo , Ácido Glucurônico/metabolismo , Glutamato-Cisteína Ligase/genética , Glutamatos/metabolismo , Glutationa/deficiência , Homeostase , Lipogênese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Estresse Oxidativo , Via de Pentose Fosfato , Substâncias Protetoras/farmacologia , Transcrição Gênica
14.
Oncotarget ; 10(42): 4290-4306, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31303963

RESUMO

Prostate Cancer (CaP) is the second leading cause of cancer related death in USA. In human CaP, gene fusion between androgen responsive regulatory elements at the 5'-untranslated region of TMPRSS2 and ETS-related genes (ERG) is present in at least 50% of prostate tumors. Here we have investigated the unique cellular transcriptome associated with over-expression of ERG in ERG-inducible LNCaP cell model system of human CaP. Comprehensive transcriptome analyses reveal a distinct signature that distinguishes ERG dependent and independent CaP in LNCaP cells. Our data highlight a significant heterogeneity among the transcripts. Out of the 526 statistically significant differentially expressed genes, 232 genes are up-regulated and 294 genes are down-regulated in response to ERG. These ERG-associated genes are linked to several major cellular pathways, cell cycle regulation being the most significant. Consistently our data indicate that ERG plays a key role in modulating the expression of genes required for G1 to S phase transition, particularly those that affect cell cycle arrest at G1 phase. Moreover, cell cycle arrest in response to ERG appears to be promoted by induction of p21 in a p53 independent manner. These findings may provide new insights into mechanisms that promote growth and progression of CaP.

15.
RNA Biol ; 15(10): 1348-1363, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30321100

RESUMO

Altered expression levels of protein-coding genes and microRNAs have been implicated in the pathogenesis of Huntington's disease (HD). The involvement of other ncRNAs, especially long ncRNAs (lncRNA), is being realized recently and the related knowledge is still rudimentary. Using small RNA sequencing and PCR arrays we observed perturbations in the levels of 12 ncRNAs in HD mouse brain, eight of which had human homologs. Of these, Meg3, Neat1, and Xist showed a consistent and significant increase in HD cell and animal models. Transient knock-down of Meg3 and Neat1 in cell models of HD led to a significant decrease of aggregates formed by mutant huntingtin and downregulation of the endogenous Tp53 expression. Understanding Meg3 and Neat1 functions in the context of HD pathogenesis is likely to open up new strategies to control the disease.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , RNA Longo não Codificante/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos , RNA Longo não Codificante/antagonistas & inibidores , Análise de Sequência de RNA , Proteína Supressora de Tumor p53/genética
16.
Hum Immunol ; 78(11-12): 724-730, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28867178

RESUMO

Interferon-γ-induced aminopeptidase ERAP1 trims peptides within the endoplasmic reticulum so that they can be loaded onto MHC class I and presented to the CD8+ T-cells. ERAP1 association and its interaction with HLA-C∗06 is controversial across different populations. We have investigated the association and possible functional role of non-synonymous SNPs at different exons of ERAP1 (rs26653: Arg127Pro, rs30187: Lys528Arg and rs27044: Gln730Glu) and their interactions with HLA-C∗06 in psoriasis. Significant associations of HLA-C∗06 (OR=5.47, P<2.2×10-16), rs30187 (OR 1.35, P=7.4×10-4) and rs27044 (OR=1.24, P=5.8×10-3) were observed. All three ERAP1 SNPs showed significant association only for HLA-C∗06 positive patients, while rs30187 and rs27044 showed significant association only for early onset patients (rs30187: OR=1.47, P=9.6×10-5; rs27044: OR=1.36, P=3.3×10-4). No differential expression of ERAP1 was observed either between paired uninvolved and involved skin tissues of psoriasis patients or between non-risk and risk variants in the involved skin. Significant epistatic interaction was observed between HLA-C∗06 and the SNP (rs27044) located at the peptide-binding cavity of ERAP1. Evolutionary conservation analysis among mammals showed confinement of Lys528 and Gln730 within highly conserved regions of ERAP1 and suggested the possible detrimental effect of this allele in ERAP1 regulation.


Assuntos
Aminopeptidases/genética , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Menor/genética , Psoríase/genética , Adulto , Idade de Início , Aminopeptidases/metabolismo , Apresentação de Antígeno , Epistasia Genética , Evolução Molecular , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Antígenos HLA-C/metabolismo , Humanos , Índia/epidemiologia , Interferon gama/metabolismo , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor/metabolismo , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Domínios Proteicos/genética , Psoríase/epidemiologia , Adulto Jovem
17.
Clin Epigenetics ; 9: 13, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28174608

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is one of the common malignancies in Southeast Asia. Epigenetic changes, mainly the altered DNA methylation, have been implicated in many cancers. Considering the varied environmental and genotoxic exposures among the Indian population, we conducted a genome-wide DNA methylation study on paired tumor and adjacent normal tissues of ten well-differentiated OSCC patients and validated in an additional 53 well-differentiated OSCC and adjacent normal samples. RESULTS: Genome-wide DNA methylation analysis identified several novel differentially methylated regions associated with OSCC. Hypermethylation is primarily enriched in the CpG-rich regions, while hypomethylation is mainly in the open sea. Distinct epigenetic drifts for hypo- and hypermethylation across CpG islands suggested independent mechanisms of hypo- and hypermethylation in OSCC development. Aberrant DNA methylation in the promoter regions are concomitant with gene expression. Hypomethylation of immune genes reflect the lymphocyte infiltration into the tumor microenvironment. Comparison of methylome data with 312 TCGA HNSCC samples identified a unique set of hypomethylated promoters among the OSCC patients in India. Pathway analysis of unique hypomethylated promoters indicated that the OSCC patients in India induce an anti-tumor T cell response, with mobilization of T lymphocytes in the neoplastic environment. Survival analysis of these epigenetically regulated immune genes suggested their prominent role in OSCC progression. CONCLUSIONS: Our study identified a unique set of hypomethylated regions, enriched in the promoters of immune response genes, and indicated the presence of a strong immune component in the tumor microenvironment. These methylation changes may serve as potential molecular markers to define risk and to monitor the prognosis of OSCC patients in India.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Metilação de DNA/imunologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias Bucais/genética , Neoplasias Bucais/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/patologia , Ilhas de CpG , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes/imunologia , Estudo de Associação Genômica Ampla/métodos , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/patologia , Prognóstico , Regiões Promotoras Genéticas , Carcinoma de Células Escamosas de Cabeça e Pescoço , Análise de Sobrevida , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA