Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2300011, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452434

RESUMO

Patients undergoing gynecological procedures suffer from lasting side effects due to intraoperative nerve damage. Small, delicate nerves with complex and nonuniform branching patterns in the female pelvic neuroanatomy make nerve-sparing efforts during standard gynecological procedures such as hysterectomy, cystectomy, and colorectal cancer resection difficult, and thus many patients are left with incontinence and sexual dysfunction. Herein, a near-infrared (NIR) fluorescent nerve-specific contrast agent, LGW08-35, that is spectrally compatible with clinical fluorescence guided surgery (FGS) systems is formulated and characterized for rapid implementation for nerve-sparing gynecologic surgeries. The toxicology, pharmacokinetics (PK), and pharmacodynamics (PD) of micelle formulated LGW08-35 are examined, enabling the determination of the optimal imaging doses and time points, blood and tissue uptake parameters, and maximum tolerated dose (MTD). Application of the formulated fluorophore to imaging of female rat and swine pelvic neuroanatomy validates the continued clinical translation and use for real-time identification of important nerves such as the femoral, sciatic, lumbar, iliac, and hypogastric nerves. Further development of LGW08-35 for clinical use will unlock a valuable tool for surgeons in direct visualization of important nerves and contribute to the ongoing characterization of the female pelvic neuroanatomy to eliminate the debilitating side effects of nerve damage during gynecological procedures.

2.
Life Sci ; 317: 121467, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736764

RESUMO

AIMS: This research aims to compare the therapeutic potential of target-specific phosphorothioate backbone-modified aptamer L5 (TLS9a)-functionalized paclitaxel (PTX)-loaded nanocarrier (PTX-NPL5) that we formulated with that of non-targeted commercial formulation, protein albumin-bound nanoparticles of PTX, Abraxane® (CF) against hepatocellular carcinoma (HCC) through a myriad of preclinical investigations. MAIN METHODS: A variety of in vitro and in vivo assays have been executed to compare the therapeutic effects of the formulations under investigation, including the investigation of the degree of apoptosis induction and its mechanism, cell cycle analysis, the level of ROS production, and redox status, the morphological and histological characteristics of malignant livers, and in vivo imaging. The formulations were also compared concerning pharmacokinetic behaviors. Finally, in silico molecular docking has been performed to predict the possible interactions between aptamer and target(s). KEY FINDINGS: PTX-NPL5 exhibited therapeutic superiority over CF in terms of inducing apoptosis, cell cycle arrest, endorsing oxidative stress to neoplastic cells, and reducing hepatic cancerous lesions. Unlike CF, PTX-NPL5 did not exhibit any significant toxicity in healthy hepatocytes, proving enough impetus regarding the distinctive superiority of PTX-NPL5 over CF. The pharmacokinetic analysis further supported superior penetration and retention of PTX-NPL5 in neoplastic hepatocytes compared to CF. A molecular modeling study proposed possible interaction between aptamer L5 and heat shock protein 70 (HSP70). SIGNIFICANCE: The target-specificity of PTX-NPL5 towards neoplastic hepatocytes, probably achieved through HSP70 recognition, enhanced its therapeutic efficacy over CF, which may facilitate its real clinical deployment against HCC in the near future.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Simulação de Acoplamento Molecular , Neoplasias Hepáticas/tratamento farmacológico , Paclitaxel/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral
3.
Int J Pharm ; 606: 120892, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34274455

RESUMO

The main objective of this study was to assess the therapeutic activity of gum odina and gelatin based biomimetic scaffold which was previously established as an excellent wound dressing material. In the accelerated stability study, the changes in physicochemical properties were found to be negligible. The cytotoxicity studies were carried out in-vitro and the results showed that upto 90% of the cells remained viable in presence of the scaffold, confirming its biocompatibility. Moreover, results depicted the superior ability of the scaffold to promote cutaneous healing by increasing the rate of wound contraction (about 98%), granulation formation, collagen deposition and formation of an intact epidermis within 18 days. A satisfactory amount of hydroxyproline (240.2 ± 6.67 µg/100 mg tissue) in scaffold treated groups at 21 days ensured the significant deposition of collagen to re-epithelialization. Further it can be hypothesized that the controlled levels of antioxidant enzymes (SOD, CAT) to diminish the oxidative stress in the wounded sites were due to the innate antioxidant properties of both blank and drug loaded scaffold. These results strongly indicated that the prepared scaffolds have strong potential for biomedical applications and it may serve as promising candidate for the next generation of wound treatment systems.


Assuntos
Antibacterianos/administração & dosagem , Biomimética , Gelatina , Alicerces Teciduais , Cicatrização/efeitos dos fármacos , Animais , Bandagens , Camundongos , Células NIH 3T3 , Ratos Wistar
4.
Mol Ther Nucleic Acids ; 20: 34-49, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32146417

RESUMO

Site-specific delivery of chemotherapeutics specifically to neoplastic hepatocytes without affecting normal hepatocytes should be a focus for potential therapeutic management of hepatocellular carcinoma (HCC). The aptamer TLS 9a with phosphorothioate backbone modifications (L5) has not been explored so far for preferential delivery of therapeutics in neoplastic hepatocytes to induce apoptosis. Thus, the objective of the present investigation was to compare the therapeutic potential of L5-functionalized drug nanocarrier (PTX-NPL5) with those of the other experimental drug nanocarriers functionalized by previously reported HCC cell-targeting aptamers and non-aptamer ligands, such as galactosamine and apotransferrin. A myriad of well-defined investigations such as cell cycle analysis, TUNEL (terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling) assay, and studies related to apoptosis, histopathology, and immunoblotting substantiated that PTX-NPL5 had the highest potency among the different ligand-attached experimental formulations in inducing selective apoptosis in neoplastic hepatocytes via a mitochondrial-dependent apoptotic pathway. PTX-NPL5 did not produce any notable toxic effects in healthy hepatocytes, thus unveiling a new and a safer option in targeted therapy for HCC. Molecular modeling study identified two cell-surface biomarker proteins (tumor-associated glycoprotein 72 [TAG-72] and heat shock protein 70 [HSP70]) responsible for ligand-receptor interaction of L5 and preferential internalization of PTX-NPL5 via clathrin-mediated endocytosis in neoplastic hepatocytes. The potential of PTX-NPL5 has provided enough impetus for its rapid translation from the pre-clinical to clinical domain to establish itself as a targeted therapeutic to significantly prolong survival in HCC.

5.
AAPS PharmSciTech ; 21(3): 89, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32026264

RESUMO

Aptamers offer a significant promise to target various cancers including hepatocellular carcinoma (HCC), for their high affinity and ability to reach the target site(s), non-immunogenicity, and low cost. The targeting ability to neoplastic hepatocytes by the aptamer, TLS 9a with phosphorothioate backbone modification (designated as L5), has not been explored yet. Hence, we investigated the comparative potential of L5 with some other previously reported liver cancer cell-specific aptamers, conjugated on the surface of drug-nanocarriers. Various in vitro studies such as cytotoxicity, in vitro cellular uptake, cell cycle analysis, and investigations related to apoptosis were performed. In vivo studies carried out here include macroscopic and microscopic hepatic alterations in chemically induced hepatocarcinogenesis in rats, upon experimental treatments. The outcome of the investigations revealed that L5-functionalized drug-nanocarrier (PTX-NPL5) had the highest apoptotic potential compared with the other aptamer-conjugated experimental formulations. Further, its maximum internalization by neoplastic hepatocytes and minimum internalization by normal hepatocytes indicate that it had the potential to preferentially target the neoplastic hepatocytes. Data of in vivo studies revealed that PTX-NPL5 reduced tumor incidences and tumor progress. Superior potency of PTX-NPL5 may be due to the maximum affinity of L5 towards neoplastic hepatocytes resulting in maximum permeation of drug-nanocarrier in them. An effective site-specific targeting of neoplastic hepatocytes can be achieved by L5 for preferential delivery of therapeutics. Further, investigations are needed to identify the target protein(s) on neoplastic hepatocytes responsible for ligand-receptor interaction of L5.


Assuntos
Apoptose/efeitos dos fármacos , Aptâmeros de Nucleotídeos/química , Carcinoma Hepatocelular/tratamento farmacológico , Hepatócitos/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Animais , Carcinoma Hepatocelular/patologia , Portadores de Fármacos , Células Hep G2 , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/patologia , Masculino , Nanopartículas , Ratos
6.
Drug Deliv ; 24(1): 346-357, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28165821

RESUMO

Docetaxel (DTX) is found to be very effective against glioma cell in vitro. However, in vivo passage of DTX through BBB is extremely difficult due to the physicochemical and pharmacological characteristics of the drug. No existing formulation is successful in this aspect. Hence, in this study, effort was made to send DTX through blood-brain barrier (BBB) to brain to treat diseases such as solid tumor of brain (glioma) by developing DTX-loaded nanoliposomes. Primarily drug-excipients interaction was evaluated by FTIR spectroscopy. The DTX-loaded nanoliposomes (L-DTX) were prepared by lipid layer hydration technique and characterized physicochemically. In vitro cellular uptake in C6 glioma cells was investigated. FTIR data show that the selected drug and excipients were chemically compatible. The unilamellar vesicle size was less than 50 nm with smooth surface. Drug released slowly from L-DTX in vitro in a sustained manner. The pharmacokinetic data shows more extended action of DTX from L-DTX in experimental rats than the free-drug and Taxotere®. DTX from L-DTX enhanced 100% drug concentration in brain as compared with Taxotere® in 4 h. Thus, nanoliposomes as vehicle may be an encouraging strategy to treat glioma with DTX.


Assuntos
Neoplasias Encefálicas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Taxoides/administração & dosagem , Taxoides/metabolismo , Administração Intravenosa , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Docetaxel , Lipossomos , Masculino , Nanopartículas/química , Ratos , Ratos Sprague-Dawley , Taxoides/química , Resultado do Tratamento
7.
AAPS PharmSciTech ; 18(3): 697-709, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27222026

RESUMO

The objectives of this research work were to develop optimized nanoparticulate formulations of poly (d,l-lactic-co-glycolic acid) (PLGA) (85:15) with an anti-AIDS drug stavudine and to evaluate their in-vitro uptake by the macrophages and hepatotoxicity in-vivo. Nanoparticles were prepared by nanoprecipitation method based on a factorial design with varying parameters such as the amounts of polymer and stabilizer used. Physicochemical characterizations such as drug-excipient interaction, surface morphology, particle size, and zeta potential measurements were carried out. The best formulation was selected and tagged with fluorescein isothiocyanate (FITC) for cellular uptake study of the formulation. In-vitro uptake of nanoparticles by macrophages was carried out. Formulation-induced hepatotoxicity was assessed by analyzing some serum hepatotoxic parameters and hepatic histology following 10-day treatment in comparison with the free drug. Nanoparticles exhibited smooth surface with particle size 84-238 nm, high entrapment efficiency (approx 85%), and negative surface charge. Formulations showed a sustained drug release pattern over the study period. In-vitro uptake study by macrophages exhibited a time-dependent profile. In-vivo studies on rats showed improvement in the serum parameters and maintenance of the integrity of the hepatic architecture indicating decreased hepatotoxicity with the formulations as compared to the free drug. The experimental results showed a positive outcome in the development of antiretroviral drug carrier exhibiting sustained drug release, macrophage-targeted delivery characteristics, and having reduced hepatoxicity. This could be beneficial for the management of early stage of HIV infection besides reducing the drug load for effective treatment, thereby offering an attractive option in AIDS therapy.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , Nanopartículas/química , Estavudina/química , Estavudina/farmacologia , Animais , Fármacos Anti-HIV/efeitos adversos , Química Farmacêutica/métodos , Preparações de Ação Retardada/efeitos adversos , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Excipientes/química , Ácido Láctico/química , Macrófagos/efeitos dos fármacos , Masculino , Tamanho da Partícula , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Estavudina/efeitos adversos
8.
Curr Pharm Des ; 21(36): 5172-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26412361

RESUMO

Nanomedicine is an emerging and rapidly growing field, possibly exploring for high expectation to healthcare. Nanoformulations have been designed to overcome challenges due to the development and fabrication of nanostructures. Unique size-dependent properties of nanoformulations make them superior and indispensable in many areas of human activity. Nano drug delivery systems are formulated and engineered to carry and deliver a number of substances in a targeted and controlled way. The vision of nanocarriers can be designed that will serve a dual purpose, allowing both treatment and diagnosis to be contained in an 'all-in-one' package. Nanoscale drugdelivery systems efficiently regulate the release, pharmacokinetics, pharmacodynamics, solubility, immunocompatibility, cellular uptake and biodistribution of chemical entities (drug). Their cellular uptake takes place by various mechanisms such as micropinocytosis, phagocytosis and receptor mediated endocytosis. These phenomena cause longer retention in blood circulation resulting in the release of the encapsulated materials in a sustained manner thus minimize the plasma fluctuations and toxic side effects. In this manner, the therapeutic index of conventional pharmaceuticals is efficiently increased. They can be used to deliver both micro and macro biomolecules such as peptides, proteins, plasmid DNA and synthetic oligodeoxynucleotides. In this present review, several recent developing and modifying nano-products for the detection, analysis, and treatment of diseases with their US and world patents along with various diagnostic kits have been discussed.


Assuntos
Sistemas de Liberação de Medicamentos/tendências , Nanoestruturas , Nanotecnologia/tendências , Animais , Humanos , Nanomedicina/tendências , Tamanho da Partícula , Patentes como Assunto , Preparações Farmacêuticas/administração & dosagem
9.
Int J Biol Macromol ; 79: 405-12, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25989147

RESUMO

This investigation aims to isolate an Actinomycetes strain producing a biosurfactant from the unexplored region of industrial and coal mine areas. Actinomycetes are selected for this study as their novel chemistry was not exhausted and they have tremendous potential to produce bioactive secondary metabolites. The biosurfactant was characterized and further needed to be utilized for pharmaceutical dosage form. Isolation, purification, screening, and characterization of the Actinomycetes A17 were done followed by its fermentation in optimized conditions. The cell-free supernatant was used for the extraction of the biosurfactant and precipitated by cold acetone. The dried precipitate was purified by TLC and the emulsification index, surface tension and CMC were determined. The isolated strain with preferred results was identified as Actinomycetes nocardiopsis A17 with high foam-forming properties. It gives lipase, amylase, gelatinase, and protease activity. The emulsification index was found to be 93±0.8 with surface tension 66.67 dyne/cm at the lowest concentration and cmc 0.6 µg/ml. These biosurfactants were characterized by Fourier transform infra red (FT-IR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Therefore, it can be concluded that the biosurfactant produced by Actinomycetes nocardiopsis sp. strain A17 was found to have satisfactory results with high surface activity and emulsion-forming ability.


Assuntos
Actinobacteria/metabolismo , RNA Ribossômico 16S/genética , Tensoativos/metabolismo , Actinobacteria/química , Actinobacteria/classificação , Actinobacteria/genética , Amilases/biossíntese , Amilases/isolamento & purificação , Emulsões , Fermentação , Gelatinases/biossíntese , Gelatinases/isolamento & purificação , Concentração de Íons de Hidrogênio , Lipase/biossíntese , Lipase/isolamento & purificação , Micelas , Peptídeo Hidrolases/biossíntese , Peptídeo Hidrolases/isolamento & purificação , Filogenia , Tensão Superficial , Tensoativos/isolamento & purificação , Temperatura
10.
Curr Pharm Biotechnol ; 16(4): 380-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658382

RESUMO

Lipid based vesicular drug delivery system, one of the emerging technologies designed for addressing the delivery challenges of conventional drug delivery methods, has widespread applications in chemotherapeutics, immunotherapeutics, recombinant DNA technology, membrane biology and also as a diagnostic tool in different biological field. The enclosed phospholipid bilayer spherical structure, typically known as liposome, is a versatile vesicular delivery system to carry hydrophilic/hydrophobic drug generally efficiently to the site of action leading to reduced non-specific toxicity and improved bioavailability of the therapeutic moiety. Efficacy of drug encapsulated in liposome depends mainly on the circulation amount of liposome and its residence time, in vivo drug release, drug accumulation in the target site and uptake of the formulation in the reticuloendothelial system. Liposomal formulation factors that dictate those actions are liposomal size (hydrodynamic diameter), surface charge, lipid composition and steric stabilization. Variation in liposomal size shows around 100 fold alterations in pharmacokinetic parameters and systemic activity while the other factors such as surface charge, lipid composition and steric stabilization bring only about 10 fold changes in those properties. The findings indicate the critical role of vesicular size in liposomal efficacy. In the present review the effect of size-variation of liposome on systemic activity of drug as well as its pharmacokinetic profile will be discussed to understand the rational designing of liposomal preparation to maximize therapeutic activity of a drug at desired magnitude and to provide a wide range of product applications such as immunological vaccines, chemotherapy, antimicrobial therapy etc.


Assuntos
Lipossomos/química , Fosfolipídeos/química , Animais , Humanos , Lipossomos/farmacocinética , Lipossomos/farmacologia , Lipossomos/uso terapêutico , Fosfolipídeos/farmacocinética , Fosfolipídeos/farmacologia , Fosfolipídeos/uso terapêutico
11.
Curr Diabetes Rev ; 11(2): 64-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25619540

RESUMO

Hepatic cancer stands as one of the frontier causes of cancer related mortality worldwide. Among the several risk factors already established, type 2 diabetes is now considered as one of the important risks in progression of liver cancer. Studies have shown that likelihood of occurrence of liver cancer is many folds higher in patients diagnosed with type II diabetes compared to patients without diabetes. Liver plays an important role in metabolism of glucose in our body, so may be type II diabetes as it is an important epiphenomenon of hepatic diseases such as liver cirrhosis, liver failure, fatty liver, chronic hepatitis and hepatocellular carcinoma. Some reports suggested that extensive change in enzyme structures in molecular level in diabetic patients may lead to liver function damage and hence accelerate hepatic cancer. Other strong links between these two diseases are "non alcoholic fatty liver diseases" and "nonalcoholic steatohepatitis" which are metabolic disorders caused by type II diabetes and eventually develops hepatocellular carcinoma. However, it still remains unanswered whether prevention of diabetes would effectively lower the chances of developing liver cancer or eliminating diabetes from the population would effectively reduce the liver cancer incidence. In this review, we will primarily focus on the molecular link between type2 diabetes and hepatic cancer and investigate underlying mechanism to establish type II diabetes as predisposed cause of hepatic cancer.


Assuntos
Carcinoma Hepatocelular/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Neoplasias Hepáticas/epidemiologia , Obesidade/complicações , Causalidade , Gerenciamento Clínico , Humanos , Hiperglicemia , Inflamação , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica/etiologia , Fatores de Risco
12.
Int J Biol Macromol ; 70: 292-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25014636

RESUMO

A Nocardiopsis sp. stain B2 with an ability to produce stable α-amylase was isolated from marine sediments. The characterization of microorganism was done by biochemical tests and 16S rDNA sequencing. The α-amylase was purified by gel filtration chromatography by using sephadex G-75. The molecular mass of the amylase was found to be 45 kDa by SDS-PAGE and gel filtration chromatography. The isolated α-amylase was immobilized by ionotropic gelation technique using gellan gum (GG). These microspheres were spherical with average particle size of 375.62±21.76 to 492.54±32.18 µm. The entrapment efficiency of these α-amylase loaded GG microspheres was found 74.76±1.32 to 87.64±1.52%. Characterization of α-amylase-gellan gum microspheres was confirmed using FTIR and SEM analysis. The in vitro amylase release kinetic have been studied by various mathematical models that follow the Korsmeyer-Peppas model (R2=0.9804-0.9831) with anomalous (non-Fickian) diffusion release mechanism.


Assuntos
Actinobacteria/enzimologia , Enzimas Imobilizadas , Microesferas , Polissacarídeos Bacterianos/química , alfa-Amilases/química , Actinobacteria/crescimento & desenvolvimento , Ativação Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Cinética , Tamanho da Partícula , Cloreto de Sódio/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , alfa-Amilases/isolamento & purificação
13.
Curr Drug Metab ; 15(6): 565-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24909417

RESUMO

Nanomaterials have made a significant impact on cancer therapeutics and an emergence of polymeric nanoparticle provides a unique platform for delivery of drug molecules of diverse nature. Nanoparticles can be targeted at the tumor cells due to enhanced permeability and retention effect. Moreover, nanoparticles can be grafted by various ligands on their surface to target the specific receptors overexpressed by cancer cells or angiogenic endothelial cells. These approaches ultimately result in longer circulation half-lives, improved drug pharmacokinetics, reduced side effects of therapeutically active substances and overcoming cancer chemo-resistance thereby enhancing the therapeutic efficacy of the treatment. This review article summarizes the recent efforts in cancer nanochemotherapeutics using polymeric nanoparticles with a special reference to their pharmacokinetic and biodistribution profiles, their role in reversing multidrug resistance in cancer and strategies of tumor targeting with them, along with the challenges in the field.


Assuntos
Portadores de Fármacos/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Polímeros/administração & dosagem , Animais , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Nanopartículas/química , Neoplasias/metabolismo , Polímeros/química , Polímeros/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA