Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 183: 1784-1793, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34051253

RESUMO

Naturally occurring peroxidases are important for living organisms and have manifold utility in industries. However, lack of stability in harsh reaction conditions hinders wide applicability of such enzymes. Thus, suitable alternative is vital which can endure severe reaction conditions. As a substitute of natural peroxidase, herein, biopolymer-based polyelectrolyte complexes (PECs) coordinated with Fen+ is proposed as macromolecular peroxidase mimicking systems. Three PECs were engineered via complexation of protonated chitosan and alginate with Fe2+ (Fe2+-PEC), Fe3+ (Fe3+-PEC), and Fe3O4 (Fe3O4-PEC), respectively. Computational study showed the Fe3+-PEC was highly stable with abundant electrostatic and intramolecular hydrogen bonding interactions. The versatility of the Fe-PECs as artificial peroxidase biocatalysts was probed by two types of peroxidase assays - ABTS oxidation in buffer systems (pH 4.0 and 7.0) and pyrogallol oxidation in organic solvents (acetonitrile, ethyl acetate and toluene). Overall, Fe3+-PEC showed remarkably high peroxidase activity both in aqueous buffers and in organic solvents, whereas, Fe3O4-PEC showed least catalytic activity. Finally, as a proof of concept, the ability of the biocatalyst to carry out deep oxidative desulphurization was demonstrated envisaging removal of dibenzothiophene from model fossil fuel in a sustainable way.


Assuntos
Biopolímeros/química , Compostos Férricos/síntese química , Peroxidase/síntese química , Tiofenos/análise , Alginatos/química , Biocatálise , Catálise , Quitosana/química , Compostos Férricos/química , Gasolina , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Peroxidase/química
2.
Biochemistry ; 56(1): 14-21, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28005342

RESUMO

DNA is rapidly cleaved under mild alkaline conditions at apyrimidinic/apurinic sites, but the half-life is several weeks in phosphate buffer (pH 7.5). However, abasic sites are ∼100-fold more reactive within nucleosome core particles (NCPs). Histone proteins catalyze the strand scission, and at superhelical location 1.5, the histone H4 tail is largely responsible for the accelerated cleavage. The rate constant for strand scission at an abasic site is enhanced further in a nucleosome core particle when it is part of a bistranded lesion containing a proximal strand break. Cleavage of this form results in a highly deleterious double-strand break. This acceleration is dependent upon the position of the abasic lesion in the NCP and its structure. The enhancement in cleavage rate at an apurinic/apyrimidinic site rapidly drops off as the distance between the strand break and abasic site increases and is negligible once the two forms of damage are separated by 7 bp. However, the enhancement of the rate of double-strand break formation increases when the size of the gap is increased from one to two nucleotides. In contrast, the cleavage rate enhancement at 2-deoxyribonolactone within bistranded lesions is more modest, and it is similar in free DNA and nucleosome core particles. We postulate that the enhanced rate of double-strand break formation at bistranded lesions containing apurinic/apyrimidinic sites within nucleosome core particles is a general phenomenon and is due to increased DNA flexibility.


Assuntos
Ácido Apurínico/química , Quebras de DNA de Cadeia Dupla , DNA/química , Nucleossomos/química , Ácido Apurínico/metabolismo , DNA/genética , DNA/metabolismo , Reparo do DNA , DNA de Cadeia Simples , Histonas/química , Histonas/metabolismo , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Conformação de Ácido Nucleico , Nucleossomos/genética , Nucleossomos/metabolismo , Domínios Proteicos
3.
Environ Sci Technol ; 47(18): 10535-40, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23930913

RESUMO

It has been reported by us recently that p-nitrobenzyl bromide (PNBBr) can be synthesized from p-nitrotoluene (PNT) in high isolated yield with respect to available bromine in 2:1 Br(-)-BrO3(-) employed as brominating reagent. The reaction was conducted in ethylene dichloride (EDC) and the substrate was taken in excess to suppress dibromo impurity formation. The product was "cold crystallized" from the reaction mass and the mother liquor was recycled in the subsequent batch thereby eliminating organic discharge. The present work attempts to further advance the synthesis of this commercially important molecule employed in protection-deprotection strategies. Herein its successful synthesis employing neat substrate and solar radiation as the sole energy source to drive this photothermochemical reaction is reported. Further, 100% pure PNBBr could be isolated from the solid reaction mass in 87% yield by leaching out the excess substrate through supercritical CO2 (Sc-CO2) extraction. The reaction was therefore accomplished cleanly in all respects and with low carbon footprint.


Assuntos
Dióxido de Carbono/química , Nitrobenzenos/síntese química , Tolueno/análogos & derivados , Química Verde , Temperatura Alta , Processos Fotoquímicos , Luz Solar , Tolueno/química , Tolueno/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA