Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38659774

RESUMO

The ability to image at high speeds is necessary for biological imaging to capture fast-moving or transient events or to efficiently image large samples. However, due to the lack of rigidity of biological specimens, carrying out fast, high-resolution volumetric imaging without moving and agitating the sample has been a challenging problem. Pupil-matched remote focusing has been promising for high NA imaging systems with their low aberrations and wavelength independence, making it suitable for multicolor imaging. However, owing to the incoherent and unpolarized nature of the fluorescence signal, manipulating this emission light through remote focusing is challenging. Therefore, remote focusing has been primarily limited to the illumination arm, using polarized laser light to facilitate coupling in and out of the remote focusing optics. Here, we introduce a novel optical design that can de-scan the axial focus movement in the detection arm of a microscope. Our method splits the fluorescence signal into S and P-polarized light, lets them pass through the remote focusing module separately, and combines them with the camera. This allows us to use only one focusing element to perform aberration-free, multi-color, volumetric imaging without (a) compromising the fluorescent signal and (b) needing to perform sample/detection-objective translation. We demonstrate the capabilities of this scheme by acquiring fast dual-color 4D (3D space + time) image stacks with an axial range of 70 µm and camera-limited acquisition speed. Owing to its general nature, we believe this technique will find its application in many other microscopy techniques that currently use an adjustable Z-stage to carry out volumetric imaging, such as confocal, 2-photon, and light sheet variants.

2.
Res Sq ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37886461

RESUMO

The ability to image at high speeds is necessary in biological imaging to capture fast-moving or transient events or to efficiently image large samples. However, due to the lack of rigidity of biological specimens, carrying out fast, high-resolution volumetric imaging without moving and agitating the sample has been a challenging problem. Pupil-matched remote focusing has been promising for high NA imaging systems with their low aberrations and wavelength independence, making it suitable for multicolor imaging. However, owing to the incoherent and unpolarized nature of the fluorescence signal, manipulating this emission light through remote focusing is challenging. Therefore, remote focusing has been primarily limited to the illumination arm, using polarized laser light for facilitating coupling in and out of the remote focusing optics. Here we introduce a novel optical design that can de-scan the axial focus movement in the detection arm of a microscope. Our method splits the fluorescence signal into S and P-polarized light and lets them pass through the remote focusing module separately and combines them with the camera. This allows us to use only one focusing element to perform aberration-free, multi-color, volumetric imaging without (a) compromising the fluorescent signal and (b) needing to perform sample/detection-objective translation. We demonstrate the capabilities of this scheme by acquiring fast dual-color 4D (3D space + time) image stacks, with an axial range of 70 µm and camera limited acquisition speed. Owing to its general nature, we believe this technique will find its application to many other microscopy techniques that currently use an adjustable Z-stage to carry out volumetric imaging such as confocal, 2-photon, and light sheet variants.

3.
Chem Asian J ; 18(22): e202300654, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37818755

RESUMO

Two Zn(II)-based compounds, [Zn2 L1 (OAc)3 (MeOH)] (1) and [Zn2 L2 (OAc)3 ]n (2), have been reported where HL1 is (E)-4-bromo-2-methoxy-6-(((2-morpholino ethyl)imino) methyl)phenol and HL2 is (E)-4-bromo-2-methoxy-6-(((2-(piperazine-1-yle)ethyl)imino)methyl) phenol. Single-crystal X-ray diffraction (SCXRD) analysis unveils vivid change in structural arrangements and dimensionality from 1 to 2 due to change in coordinated atom from oxygen to nitrogen of the ligands. SCXRD study shows that compound 1 is dinuclear but compound 2 has a 1-dimensional polymeric structure having helical chain. Structural diversity greatly influences the catalytic activity. Compound 1 acts as excellent catalyst for conversion of 3, 5-di-tert-butyl catechol (3, 5-DTBC) to 3, 5-di-tert-butylbenzoquinone (3, 5-DTBQ) with the turnover number (kcat ) value of 34.94 sec-1 . Further, compound 1 reveals phosphatase like activity for conversion of disodium salt of (4-nitrophenyl)-phosphate hexahydrate to p-nitrophenolate with the kcat value of 24.64 sec-1 . Interestingly, compound 2 does not show any catalytic activity. To correlate this distinctly different catalytic behavior of two compounds, DFT calculation was carried out. The calculation reveals that detachment of coordinated methanol from coordination sphere of zinc in compound 1 is energetically favourable which creates room for substrate binding, resulting in high catalytic activity. By contrast, in compound 2, detachment of piperazine or Zn-O of -COOH group is energetically unfavourable, resulting in no catalytic activity.

4.
Res Sq ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37461705

RESUMO

Light-sheet fluorescence microscopy (LSFM) in conjunction with tissue clearing techniques enables morphological investigation of large tissues faster and with excellent optical sectioning. Recently, cleared tissue axially swept light-sheet microscope (ctASLM) demonstrated three-dimensional isotropic resolution in millimeter-scaled tissues. But ASLM based microscopes suffer from low detection signal and slow imaging speed. Here we report a simple and efficient imaging platform that employs precise control of two fixed distant light-sheet foci to carry out ASLM. This allowed us to carry out full field of view (FOV) imaging at 40 frames per second (fps) which is a four-fold improvement compared to the current state-of-the-art. In addition, in a particular frame rate, our method doubles the signal compared to the current ASLM technique. To augment the overall imaging performance, we also developed a deep learning based tissue information classifier that enables faster determination of tissue boundary. We demonstrated the performance of our imaging platform on various cleared tissue samples and demonstrated its robustness over a wide range of clearing protocols.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36893380

RESUMO

A water-stable, microporous, luminescent Ni(II)-based metal-organic framework (MOF) (Ni-OBA-Bpy-18) with a 4-c uninodal sql topology was solvothermally synthesized using mixed N-, O-donor-directed π-conjugated co-ligands. The extraordinary performance of this MOF toward rapid monitoring of mutagenic explosive trinitrophenol (TNP) in aqueous and vapor phases by the fluorescence "Turn-off" technique with an ultralow detection limit of 66.43 ppb (Ksv: 3.45 × 105 M-1) was governed by a synchronous occurrence of photoinduced electron transfer-resonance energy transfer-intermolecular charge transfer (PET-RET-ICT) and non-covalent π···π weak interactions, as revealed from density functional theory studies. The recyclable nature of the MOF, detection from complex environmental matrices, and fabrication of a handy MOF@cotton-swab detection kit certainly escalated the on-field viability of the probe. Interestingly, the presence of electron-withdrawing TNP decisively facilitated the redox events of the reversible NiIII/II and NiIV/III couples under an applied voltage based on which electrochemical recognition of TNP was realized by the Ni-OBA-Bpy-18 MOF/glassy carbon electrode, with an excellent detection limit of ∼0.6 ppm. Such detection of a specific analyte by MOF-based probe via two divergent yet coherent techniques is unprecedented and yet to be explored in relevant literature.

6.
Biomed Opt Express ; 13(9): 4990-5003, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36187249

RESUMO

Axially swept light sheet microscopy (ASLM) is an emerging technique that enables isotropic, subcellular resolution imaging with high optical sectioning capability over a large field-of-view (FOV). Due to its versatility across a broad range of immersion media, it has been utilized to image specimens that may range from live cells to intact chemically cleared organs. However, because of its design, the performance of ASLM-based microscopes is impeded by a low detection signal and the maximum achievable frame-rate for full FOV imaging. Here we present a new optical concept that pushes the limits of ASLM further by scanning two staggered light sheets and simultaneously synchronizing the rolling shutter of a scientific camera. For a particular peak-illumination-intensity, this idea can make ASLMs image twice as fast without compromising the detection signal. Alternately, for a particular frame rate our method doubles the detection signal without requiring to double the peak-illumination-power, thereby offering a gentler illumination scheme compared to tradition single-focus ASLM. We demonstrate the performance of our instrument by imaging fluorescent beads and a PEGASOS cleared-tissue mouse brain.

7.
ACS Appl Mater Interfaces ; 14(28): 32457-32473, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35797477

RESUMO

Raising public awareness over the emerging health risk due to intake of arsenic-contaminated potable water is a matter of great concern. Exploration of cost-effective, self-testing kits is a substantial way to reach out to the masses and detect the presence of arsenate in water. With this agenda, a photoluminescent Mannich base Zn(II) complex (ZnMC = [Zn2(ML)2]·(ClO4)2·(H2O); HML = Mannich base ligand) has been synthesized, and its dinuclearity was verified with single-crystal X-ray diffraction structural analysis. Among a range of anions, ZnMC was found to detect arsenate selectively by showing a turn-off emission with a color change from bright green to dark under UV light. The real-life applicability of the ZnMC probe is somewhat restricted to only sensing of arsenate, but not its removal owing to the fact of its homogeneity. Considering the efficacy of ZnMC as well as a need for its easy removal from water, slight modification has been done with chloride ions in the form of ZnMC″ (=[Zn2(ML)2(Cl)2]), and finally, an interface between homogeneous and heterogeneous solid support has been explored with a strategic fabrication of ZnMC″ grafted ZnAl2O4, named as ZAZ nanomaterial. This not only imparts successful segregation of arsenate from drinking water but also provides naked-eye detection under ambient light as well as UV light. Thermodynamic parameters associated with the binding of arsenate to ZnMC and ZAZ have been evaluated through isothermal calorimetric (ITC) measurements. Steady-state and time-resolved fluorescence titration study, absorption titration study, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and computational calculations have been performed to get deep insights into the sensing properties. Proper justification of the sensing mechanism is the highlight of this work. ZAZ nanomaterial has been exploited to produce a self-test paper kit for arsenate detection with a limit of 9.86 ppb, which potentially enables applications in environmental monitoring.


Assuntos
Água Potável , Nanoestruturas , Arseniatos/química , Bases de Mannich , Microscopia Eletrônica de Varredura
8.
Nat Protoc ; 17(9): 2025-2053, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35831614

RESUMO

Light-sheet fluorescence microscopy is a rapidly growing technique that has gained tremendous popularity in the life sciences owing to its high-spatiotemporal resolution and gentle, non-phototoxic illumination. In this protocol, we provide detailed directions for the assembly and operation of a versatile light-sheet fluorescence microscopy variant, referred to as axially swept light-sheet microscopy (ASLM), that delivers an unparalleled combination of field of view, optical resolution and optical sectioning. To democratize ASLM, we provide an overview of its working principle and applications to biological imaging, as well as pragmatic tips for the assembly, alignment and control of its optical systems. Furthermore, we provide detailed part lists and schematics for several variants of ASLM that together can resolve molecular detail in chemically expanded samples, subcellular organization in living cells or the anatomical composition of chemically cleared intact organisms. We also provide software for instrument control and discuss how users can tune imaging parameters to accommodate diverse sample types. Thus, this protocol will serve not only as a guide for both introductory and advanced users adopting ASLM, but as a useful resource for any individual interested in deploying custom imaging technology. We expect that building an ASLM will take ~1-2 months, depending on the experience of the instrument builder and the version of the instrument.


Assuntos
Imageamento Tridimensional , Software , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos
9.
Dalton Trans ; 50(38): 13374-13386, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34473159

RESUMO

A new "end-off" compartmental Mannich ligand (HL1) namely 3-((bis(2-methoxyethyl)amino)methyl)-5-bromo-2-hydroxybenzaldehyde containing two methoxyethyl pendant arms and one-CHO functionality has been synthesized through conventional C-C and C-N coupling reactions. On treatment with Cu(ClO4)2, HL1 yields a dinuclear µ-phenolatocopper(II) complex having the molecular formula [Cu2(L1)2](ClO4)2(H2O)1.5 (1). Surprisingly, the ligand HL1 is radically transformed into a new asymmetric Schiff-Mannich base ligand (HLF) in the presence of NaN3 and Cu(ClO4)2 forming a unique dinuclear centro-symmetric Cu(II) complex [Cu(LF)]2 (2) as evident from single-crystal X-ray diffraction (SCXRD) analysis. A probable mechanistic rationalization has been proposed on the basis of theoretical calculations, which suggests systematic fragmentation of HL1 in the presence of azide residue and re-condensation of the fragmented units to yield the final Cu-HLF complex (2). SCXRD analysis portrays a large inter-metallic distance in complex 2 in comparison with complex 1 (5.493 vs. 2.989 Å, respectively) along with other distinct structural features. After physicochemical characterization both the complexes have been exploited to evaluate their possible anticancer proficiency on lung adenocarcinoma cell line (A549). Complex 1 distinctly impeded the proliferation of lung adenocarcinoma cells in a dose-dependent manner more efficiently than complex 2. Due to the behavior of complex 1 as potential therapeutics, cellular transformations of A549 cells have been systematically investigated. As evidenced from various in vitro experiments, the cell death mechanism triggered by complex 1 turned out to be apoptosis, as indicated by the DNA fragmentation, chromatin condensation, membrane blebbing and imbalanced cell cycle distribution as well as retard migration in A549 cells.


Assuntos
Antineoplásicos/química , Azidas/química , Complexos de Coordenação/química , Cobre/química , Bases de Mannich/química , Bases de Schiff/química , Células A549 , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Cristalografia por Raios X , Humanos , Ligantes , Conformação Molecular
10.
Biomed Opt Express ; 11(7): 3830-3842, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33014569

RESUMO

We present a beam splitter mask that can be easily added to a multiphoton raster scanning microscope to extend the depth of focus five-fold at a small loss in lateral resolution. The method is designed for ultrafast laser pulses or other light-sources featuring a low coherence length. In contrast to other methods of focus extension, our approach uniquely combines low complexity, high light-throughput and multicolor capability. We characterize the point spread function in a two-photon microscope and demonstrate fluorescence imaging of GFP labeled neurons in fixed brain samples as imaged with conventional and extended depth of focus two-photon microscopy.

11.
Light Sci Appl ; 9: 165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33024553

RESUMO

In optical microscopy, the slow axial scanning rate of the objective or the sample has traditionally limited the speed of volumetric imaging. Recently, by conjugating either a movable mirror to the image plane in a remote-focusing geometry or an electrically tuneable lens (ETL) to the back focal plane, rapid axial scanning has been achieved. However, mechanical actuation of a mirror limits the axial scanning rate (usually only 10-100 Hz for piezoelectric or voice coil-based actuators), while ETLs introduce spherical and higher-order aberrations that prevent high-resolution imaging. In an effort to overcome these limitations, we introduce a novel optical design that transforms a lateral-scan motion into a spherical aberration-free axial scan that can be used for high-resolution imaging. Using a galvanometric mirror, we scan a laser beam laterally in a remote-focusing arm, which is then back-reflected from different heights of a mirror in the image space. We characterize the optical performance of this remote-focusing technique and use it to accelerate axially swept light-sheet microscopy by an order of magnitude, allowing the quantification of rapid vesicular dynamics in three dimensions. We also demonstrate resonant remote focusing at 12 kHz with a two-photon raster-scanning microscope, which allows rapid imaging of brain tissues and zebrafish cardiac dynamics with diffraction-limited resolution.

12.
Inorg Chem ; 59(13): 9014-9028, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32573221

RESUMO

The present work discloses the application of two fluorescent zinc and cadmium complexes (1 and 2) for sensing of Hg(II) ions through a chemodosimetric approach. The ligand under consideration in this work is a N2O donor Schiff base ligand (E)-4-bromo-2-(((2-morpholinoethyl)imino)methyl)phenol (HL), which has been harnessed to generate complexes [Zn3L2(OAc)4] (1) and [Cd3L2(OAc)4] (2). X-ray single crystal diffraction studies unveil the trinuclear skeleton of complexes 1 and 2. Both complexes have been found to be highly fluorescent in nature. However, the quantum efficiency of Zn(II) complex (1) dominates over the Cd(II) analogue (2). The absorption and emission spectroscopic properties of the complexes have been investigated by density functional theory. Complexes 1 and 2 can detect Hg2+ ions selectively by fluorescence quenching, and it is noteworthy to mention that the mechanism of sensing is unique as well as interesting. In the presence of Hg2+ ions, complexes 1 and 2 are transformed to mononuclear mercuric intermediate complex (3) and finally to a trinuclear mercuric complex (4) by hydrolysis. We have successfully trapped the intermediate complex 3, and we characterized it with the aid of X-ray crystallography. Transformation of complexes 1 and 2 to intermediate complex 3 and finally to 4 has been established by UV-vis spectroscopy, fluorescence spectroscopy, ESI-MS spectroscopy, 1H NMR spectroscopy, and X-ray crystallography. The spontaneity of the above conversion is well supported by thermodynamic aspects as reflected from density functional theoretical calculations.

13.
Nat Methods ; 16(11): 1109-1113, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31673159

RESUMO

We present cleared-tissue axially swept light-sheet microscopy (ctASLM), which enables isotropic, subcellular resolution imaging with high optical sectioning capability and a large field of view over a broad range of immersion media. ctASLM can image live, expanded, and both aqueous and non-aqueous chemically cleared tissue preparations. Depending on the optical configuration, ctASLM provides up to 260 nm of axial resolution, a three to tenfold improvement over confocal and other reported cleared-tissue light-sheet microscopes. We imaged millimeter-scale cleared tissues with subcellular three-dimensional resolution, which enabled automated detection of multicellular tissue architectures, individual cells, synaptic spines and rare cell-cell interactions.


Assuntos
Microscopia de Fluorescência/métodos , Animais , Camundongos , Peixe-Zebra
14.
ACS Omega ; 4(7): 11558-11565, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460262

RESUMO

Cetrimonium bromide (CTAB)-coated water disperse magnetically separable nanocatalysts CTAB/Fe3O4@dopa@ML (M = Fe or Mn, L = cyclohexane-1,2-diylbis(azanylylidene)bis(methanylylidene)bis(2,4-diXphenol; X = Cl, Br, and I) have been synthesized using a simple synthetic strategy. This approach provides a new fruitful strategy to reduce the leaching of the active metal complex from the catalyst surface to the aqueous media. The synthesized catalysts have been found to be excellent for oxidation of alcohols in aqueous medium at room temperature. A probable catalytic pathway involving the generation of hydroperoxo intermediates has been assumed, and these intermediates have been characterized using density functional theory and several spectroscopic techniques. It is worthy of mention that the synthesized CTAB-coated magnetically separable nanocatalysts can be magnetically recovered from the aqueous reaction mixture after more than five cycles, which renders this approach as a sustainable and accessible one.

15.
Dalton Trans ; 48(8): 2772-2784, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30724925

RESUMO

Four dinuclear nickel(ii) complexes, namely [Ni4(L)2(H2O)8(µ2-H2O)2](NO3)6(H2O)6 (1), [Ni2(L)Cl2(µ-Cl)(CH3OH)] (2), [Ni2(L)(OAc)2(H2O)2]Br (3) and [Ni2(L)(H2O)4(µ2-OH)] (H2O)X(I)X (4), have been synthesized using a template synthesis technique by adding nickel(ii) salts (nitrate/chloride/bromide/iodide) to the N4O donor end-off compartmental ligand (HL) obtained via the condensation of 2-(2-pyridyl)ethylamine and 2,6-diformyl-4-isopropyl phenol in methanol. All complexes were characterized with the help of typical physicochemical techniques, and their solid-state structures were assigned from single crystal X-ray analysis. The variable temperature magnetic study reveals that the two nickel centers are antiferromagnetically coupled with J values ranging from -5 to -15 cm-1 in the complexes. The catecholase-like activity of complexes 1-4 was studied using 3,5-di-tert-butylcatechol (3,5-DTBC) as the model substrate in N,N-dimethylformamide (DMF) medium. Complex 1 shows the catecholase activity, while the other complexes were found to be inactive. The phosphatase-like activity of the complexes was also investigated in a 97.5% (v/v) DMF-water mixture using the disodium salt of 4-nitrophenylphosphate (4-NPP) as the model substrate and the reactivity trend was 4 > 1 > 3 > 2. The reasons behind the activity, inactivity and activity trend have been explored. It has been assumed that the anions associated with the complexes are supposed to play a crucial role in the whole event. Complex 1 showed catalytic promiscuity, whereas complexes 2, 3 and 4 should be considered only as the potential hydrolytic catalyst.

16.
Appl Opt ; 57(1): A134-A141, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29328138

RESUMO

Propagation-based phase imaging using the transport of intensity equation (TIE) allows rapid, deterministic phase retrieval from defocused images. However, computational solutions to the TIE suffer from significant low-frequency noise artifacts and are unique up to the application of boundary conditions on the phase. We demonstrate that quantitative phase can be imaged directly at the detector for a class of pure-phase samples by appropriately patterning the illumination to solve the TIE through an optical convolution with the source. This can reduce noise artifacts, obviates the need for user-supplied boundary conditions and is demonstrated via simulation and experiment.

17.
Opt Express ; 25(8): 9122-9137, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28437987

RESUMO

The transport of intensity equation (TIE) is a phase retrieval method that relies on measurements of the intensity of a paraxial field under propagation between two or more closely spaced planes. A limitation of TIE is its susceptibility to low frequency noise artifacts in the reconstructed phase. Under Köhler illumination, when both illumination power and exposure time are limited, the use of larger sources can improve low-frequency performance although it introduces blurring. Appropriately combining intensity measurements taken with a diversity of source sizes can improve both low- and high-frequency performance in phase reconstruction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...