Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 269: 110815, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32561017

RESUMO

In this study, the fate of several micropollutants (MPs) in wastewater due to coagulation using both fresh and recovered aluminum and iron coagulants was determined. 18 MPs from different groups such as antibiotics, food additives, and surfactants were selected and spiked into the primary influent collected from a local wastewater plant. The distribution of MPs in the recovered coagulant and treated effluent after coagulation was determined for both fresh and recycled coagulants. The distribution of MPs in wastewater and the removal during coagulation were compound specific; MPs with log Kow < 2.5 were predominantly present in the effluent after coagulation, while MPs with log Kow > 2.5 were sorbed on the coagulated sludge. The distribution ratio (Kd) of all the MPs (diclofenac, clarithromycin, etc.) with log Kow > 2.5 was determined along with their extent of accumulation in sludge due to the recycling of coagulants. Compounds such as sulfamethoxazole, erythromycin and sulfathiazole, showed low removal during coagulation. The tetracycline group of compounds showed possible chelation with iron and aluminum. Only <10% of the initially spiked MPs with log Kow > 2.5 was being recycled with the recovered coagulant, thus alleviating the concern of accumulation of the MPs during recycle of the coagulants.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Reciclagem , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias
2.
Environ Sci Technol ; 51(21): 12302-12309, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29028327

RESUMO

In this work, recovery of aluminum from coagulated primary sludge and its reuse potential as secondary coagulant were investigated. The recovery process consisted of releasing the particle-bound aluminum from primary sludge by acidification (HCl or H2SO4), followed by separation using centrifugation for dissolved coagulant recovery. The recovered coagulant was then reused for treating primary wastewater and overall coagulation efficiency was determined. While with fresh alum, the removal efficiencies of total suspended solids, chemical oxygen demand, total phosphorus, and total nitrogen were 85%, 65%, 80% and 33%, respectively, a drop in removal efficiency of total suspended solids and chemical oxygen demand was observed for recovered aluminum (85-60% and 65-50%, respectively). Nitrogen concentration remained almost constant with each cycle, while phosphorus in the effluent increased by 1 mg/L and 3 mg/L in the first and second cycle, respectively. Precipitation of various aluminum species was modeled for determining the recovery potential of aluminum at low pH. Preliminary cost analysis indicates that optimum recovery of aluminum occurred at a pH of 1.5 for both acids. Struvite precipitation effectively removed increased phosphorus solubilized by acidification at the end of second cycle, however, it also decreased the amount of aluminum available for recycle.


Assuntos
Carbono , Fósforo , Águas Residuárias , Alumínio , Nitrogênio , Esgotos , Eliminação de Resíduos Líquidos , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA