Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 122(5): 1560-1572, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29334736

RESUMO

The microscopic properties of water confined within different segments of Trpzip4 (TZ4), Trpzip5 (TZ5), and Trzpip6 (TZ6) have been compared for all the states characterized along their folding pathways. In particular, structural ordering, energetics, and dynamics of water have been examined as the peptide unfolds along the free energy landscape. It is observed that the structuring of tetrahedral network as well as translational and rotational motions of hydration waters confined within the strands and the turn regions are very different, revealing motional heterogeneity in small 16-residue trpzips. The polar and charged groups present at the peptide surface anchor to water molecules through hydrogen bonds and are responsible for differential hydration among various segments of the peptide, which is found to be correlated to their hydropathy values. The coherent collective dynamics of water is strongly coupled with conformational changes in the peptide since the trends observed in most of the computed quantities are in accordance with the folded and unfolded states classified along the folding pathway for all trpzips. The hydration behavior conform to the heterogeneity observed in the free energy landscape of stable TZ4 with four unfolded states as compared to more flexible TZ5 and TZ6 with two unfolded states each, in addition to the folded state. The hydration waters are observed to regulate the protein dynamics by continuous fluctuations in hydrogen bond network involving lateral side chains that inject conformational motions in the peptide to facilitate its unfolding. The implications of mutations on various aspects of hydration water dynamics including their impact on structural and dynamic organization of hydrogen bonds are also highlighted. Our studies affirm that topology of the free energy landscape is shaped by both spatial organization and dynamic transitions in hydration waters in addition to the conformational fluctuations in the peptide along the folding pathway.


Assuntos
Peptídeos/química , Dobramento de Proteína , Água/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular
2.
Phys Chem Chem Phys ; 19(34): 22813-22825, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28812069

RESUMO

The sensitivity of the stability of folded states and free energy landscapes to the differences in the hydrophobic content of the core residues has been studied for the set of 16-residue trpzips, namely, Trpzip4, Trpzip5 and Trpzip6. The combination of principal component analysis and different secondary structure order metrics as reaction coordinates has been used to characterize and identify all the underlying attractive basins corresponding to the folded and the unfolded states for each trpzip at 300 K. Our results reveal that even a single mutation in the hydrophobic core perturbs the stability of the folded peptide and the conformational preferences for the partially folded and unfolded states significantly, leading to concomitant alterations in the free energy landscape of trpzips. Trpzip4 is observed to have the most rugged and variegated free energy landscape with occurrence of four metastable unfolded states in addition to the folded native state. In contrast, Trpzip5 and Trpzip6 are characterized by two such metastable states. The order metrics pertaining to the rigidity of the turn residues and the distances between the side chains of the hydrophobic core residues have been found to be most revealing to understand the degree of discrimination among the folded states of different peptides in addition to the unfolded states. Our results suggest that both turn propensity and hydrophobic interactions influence the thermodynamics of the folding pathways of trpzips. The implications of the sequence dependent response of amino acids, effect of aromatic stacking interactions and packing of protein's interior for shaping the free energy landscape of the peptides have been highlighted.

3.
J Chem Phys ; 146(17): 174902, 2017 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-28477604

RESUMO

We employ molecular dynamics simulations to study the structure and solvation thermodynamics of thiolated gold nanoparticles of size 1.2 and 1.6 nm with ligand of chain length 8-16 carbons in ethane and propane over a wide range of densities close to the critical isotherm. The Helmholtz free energy is estimated by explicitly calculating the change in entropy and internal energy of solvation, and the effect of density and temperature on fluctuation-driven inherent anisotropy in the ligand corona is characterized. Since the topological variation further accentuates this instantaneous asymmetry in the ligand cloud, the anisotropy with varying surface coverage and chain length is also studied including the solvent contributions to the entropic and energetic metrics. Our results are consistent with the experiment, suggesting a route of obtaining structural insights into solvation thermodynamics that could be useful for understanding the stability of nanoparticle dispersions.

4.
Phys Chem Chem Phys ; 19(4): 3265-3278, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28084487

RESUMO

Despite very significant developments in scattering experiments like X-ray and neutron diffraction, it has been challenging to elucidate the nature of tetrahedral molecular configurations in liquid water. A key question is whether the pair correlation functions, which can be obtained from scattering experiments, are sufficient to describe the tetrahedral ordering of water molecules. In our previous study (Dhabal et al., J. Chem. Phys., 2014, 141, 174504), using data-sets generated from reverse Monte Carlo and molecular dynamics simulations, we showed that the triplet correlation functions contain important information on the tetrahedrality of water in the liquid state. In the present study, X-ray scattering experiments and molecular dynamics (MD) simulations are used to link the isothermal pressure derivative of the structure factor with the triplet correlation functions for water. Triplet functions are determined for water up to 3.3 kbar at 298 K to display the effect of pressure on the water structure. The results suggest that triplet functions (H[combining tilde](q)) obtained using a rigid-body TIP4P/2005 water model are consistent with the experimental results. The triplet functions obtained in experiment as well as in simulations evince that in the case of tetrahedral liquids, exertion of higher pressure leads to a better agreement with the Kirkwood superposition approximation (KSA). We further validate this observation using the triplet correlation functions (g(3)(r,s,t)) calculated directly from simulation trajectory, revealing that both H[combining tilde](q) in q-space and g(3)(r,s,t) in real-space contain similar information on the tetrahedrality of liquids. This study demonstrates that the structure factor, even though it has only pair correlation information of the liquid structure, can shed light on three-body correlations in liquid water through its isothermal pressure derivative term.

5.
Phys Chem Chem Phys ; 18(48): 32796-32813, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27878168

RESUMO

The secondary structure conformational properties and hydration shell metrics of the Trp-cage mini-protein are examined in the folded and unfolded ensembles in mTIP3P, TIP4P, and TIP4P-Ew water models with the CHARMM22 force-field using molecular dynamics simulations at 250 K. Upon changing the water model, the conformational order metrics of the peptide show significant differences in the unfolded rather than in the folded ensemble. The unfolding temperatures for Trp-cage are observed to be around 460, 470, and 430 K in mTIP3P, TIP4P, and TIP4P-Ew, respectively. Upon comparing the results with a previous study on a 16-residue ß-hairpin fragment of the 2GB1 protein, the same set of conformational order metrics are found to be insufficient in describing the free energy landscape of peptides having a distinct native secondary structure. However, the hydration shell properties of the peptide have been found to be independent of the sequence of the peptide and it changes in conformation upon unfolding. Our calculations reveal that for a particular water model, the secondary structure preferences in the unfolded ensembles of the two peptides are qualitatively different. The unfolded structures of Trp-cage prefer extended and compact structures in TIP4P-Ew and mTIP3P water, respectively, whereas the ß-hairpin peptide prefers extended unfolded structures in mTIP3P. The conformational preferences of the unfolded peptide in a given water model have been found to depend on the peptide sequence, where the binding energies of the water molecules around the polar residues in the unfolded conformations show sensitivity to the multipole moments of the water models. The significance of an accurate description of peptide-solvent interactions in the parametrization of biomolecular force-fields, to obtain an accurate description of conformational preferences, in particular in the unfolded ensembles of proteins, is highlighted.


Assuntos
Modelos Químicos , Simulação de Dinâmica Molecular , Peptídeos , Água , Conformação Proteica , Dobramento de Proteína
6.
J Chem Theory Comput ; 12(11): 5643-5655, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27728761

RESUMO

The sensitivity of protein glass transition temperature and dynamics of Trp-cage miniprotein to the choice of water models have been investigated by performing molecular dynamics simulations at different temperatures between 130 and 300 K using mTIP3P, TIP4P, and TIP4P-Ew water models with the CHARMM22 force field. Analysis of the structure of the protein and the ordering of the hydration shell water molecules revealed correlated dynamic crossovers of the protein and its hydration water. It is demonstrated that the parametrization of different water models is robust enough to probe the onset temperatures for the two dynamic crossovers of the peptide: the first one around 150 K which is attributed to active methyl group rotations and the second one around 200-230 K specifically pertaining to glass transition of the protein. The behavior of the protein has been found to be qualitatively similar to the three water models employed, while the structural ordering and number of hydration shell waters vary significantly among the 3-site and 4-site water models. The changes in the probability density map of methyl hydrogens of the protein with temperature also show sensitivity to the choice of water model.


Assuntos
Proteínas/química , Água/química , Sequência de Aminoácidos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Peptídeos/química , Proteínas/metabolismo , Termodinâmica , Temperatura de Transição
7.
J Chem Phys ; 144(24): 244901, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27369538

RESUMO

The extent to which solvent-mediated effective interactions between nanoparticles can be predicted based on structure and associated thermodynamic estimators for bulk solvents and for solvation of single and pairs of nanoparticles is studied here. As a test of the approach, we analyse the strategy for creating temperature-independent solvent environments using a series of homologous chain fluids as solvents, as suggested by an experimental paper [M. I. Bodnarchuk et al., J. Am. Chem. Soc. 132, 11967 (2010)]. Our conclusions are based on molecular dynamics simulations of Au140(SC10H21)62 nanoparticles in n-alkane solvents, specifically hexane, octane, decane and dodecane, using the TraPPE-UA potential to model the alkanes and alkylthiols. The 140-atom gold core of the nanocrystal is held rigid in a truncated octahedral geometry and the gold-thiolate interaction is modeled using a Morse potential. The experimental observation was that the structural and rheological properties of n-alkane solvents are constant over a temperature range determined by equivalent solvent vapour pressures. We show that this is a consequence of the fact that long chain alkane liquids behave to a good approximation as simple liquids formed by packing of monomeric methyl/methylene units. Over the corresponding temperature range (233-361 K), the solvation environment is approximately constant at the single and pair nanoparticle levels under good solvent conditions. However, quantitative variations of the order of 10%-20% do exist in various quantities, such as molar volume of solute at infinite dilution, entropy of solvation, and onset distance for soft repulsions. In the opposite limit of a poor solvent, represented by vacuum in this study, the effective interactions between nanoparticles are no longer temperature-independent with attractive interactions increasing by up to 50% on decreasing the temperature from 361 K to 290 K, accompanied by an increase in emergent anisotropy due to correlation of mass dipoles on the two nanoparticles. One expects therefore that during self-assembly using solvent evaporation, temperature can be used as a structure-directing factor as long as good solvent conditions are maintained. It also suggests that disordered configurations may emerge as solvent quality decreases due to increasing role of short-range attractions and ligand fluctuation-driven anisotropy. The possibilities of using structural estimators of various thermodynamic quantities to analyse the interplay of ligand fluctuations and solvent quality in self-assembly as well as to design solvation environments are discussed.

8.
Chem Rev ; 116(13): 7463-500, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27380438

RESUMO

Water is the most abundant liquid on earth and also the substance with the largest number of anomalies in its properties. It is a prerequisite for life and as such a most important subject of current research in chemical physics and physical chemistry. In spite of its simplicity as a liquid, it has an enormously rich phase diagram where different types of ices, amorphous phases, and anomalies disclose a path that points to unique thermodynamics of its supercooled liquid state that still hides many unraveled secrets. In this review we describe the behavior of water in the regime from ambient conditions to the deeply supercooled region. The review describes simulations and experiments on this anomalous liquid. Several scenarios have been proposed to explain the anomalous properties that become strongly enhanced in the supercooled region. Among those, the second critical-point scenario has been investigated extensively, and at present most experimental evidence point to this scenario. Starting from very low temperatures, a coexistence line between a high-density amorphous phase and a low-density amorphous phase would continue in a coexistence line between a high-density and a low-density liquid phase terminating in a liquid-liquid critical point, LLCP. On approaching this LLCP from the one-phase region, a crossover in thermodynamics and dynamics can be found. This is discussed based on a picture of a temperature-dependent balance between a high-density liquid and a low-density liquid favored by, respectively, entropy and enthalpy, leading to a consistent picture of the thermodynamics of bulk water. Ice nucleation is also discussed, since this is what severely impedes experimental investigation of the vicinity of the proposed LLCP. Experimental investigation of stretched water, i.e., water at negative pressure, gives access to a different regime of the complex water diagram. Different ways to inhibit crystallization through confinement and aqueous solutions are discussed through results from experiments and simulations using the most sophisticated and advanced techniques. These findings represent tiles of a global picture that still needs to be completed. Some of the possible experimental lines of research that are essential to complete this picture are explored.

9.
J Chem Phys ; 144(23): 234507, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27334179

RESUMO

Liquid water has several anomalous properties, including a non-monotonous dependence of density with temperature and an increase of thermodynamic response functions upon supercooling. Four thermodynamic scenarios have been proposed to explain the anomalies of water, but it is not yet possible to decide between them from experiments because of the crystallization and cavitation of metastable liquid water. Molecular simulations provide a versatile tool to study the anomalies and phase behavior of water, assess their agreement with the phenomenology of water under conditions accessible to experiments, and provide insight into the behavior of water in regions that are challenging to probe in the laboratory. Here we investigate the behavior of the computationally efficient monatomic water models mW and mTIP4P/2005(REM), with the aim of unraveling the relationships between the lines of density extrema in the p-T plane, and the lines of melting, liquid-vapor spinodal and non-equilibrium crystallization and cavitation. We focus particularly on the conditions for which the line of density maxima (LDM) in the liquid emerges and disappears as the pressure is increased. We find that these models present a retracing LDM, same as previously found for atomistic water models and models of other tetrahedral liquids. The low-pressure end of the LDM occurs near the pressure of maximum of the melting line, a feature that seems to be general to models that produce tetrahedrally coordinated crystals. We find that the mW water model qualitatively reproduces several key properties of real water: (i) the LDM is terminated by cavitation at low pressures and by crystallization of ice Ih at high pressures, (ii) the LDM meets the crystallization line close to the crossover in crystallization from ice Ih to a non-tetrahedral four-coordinated crystal, and (iii) the density of the liquid at the crossover in crystallization from ice Ih to a four-coordinated non-tetrahedral crystal coincides with the locus of maximum in diffusivity as a function of pressure. The similarities in equilibrium and non-equilibrium phase behavior between the mW model and real water provide support to the quest to find a compressibility extremum, and determine whether it presents a maximum, in the doubly metastable region.

10.
J Chem Phys ; 144(23): 234509, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27334181

RESUMO

Experiments and simulations demonstrate some intriguing equivalences in the effect of pressure and electrolytes on the hydrogen-bonded network of water. Here, we examine the extent and nature of equivalence effects between pressure and salt concentration using relationships between structure, entropy, and transport properties based on two key ideas: first, the approximation of the excess entropy of the fluid by the contribution due to the atom-atom pair correlation functions and second, Rosenfeld-type excess entropy scaling relations for transport properties. We perform molecular dynamics simulations of LiCl-H2O and bulk SPC/E water spanning the concentration range 0.025-0.300 molefraction of LiCl at 1 atm and pressure range from 0 to 7 GPa, respectively. The temperature range considered was from 225 to 350 K for both the systems. To establish that the time-temperature-transformation behaviour of electrolyte solutions and water is equivalent, we use the additional observation based on our simulations that the pair entropy behaves as a near-linear function of pressure in bulk water and of composition in LiCl-H2O. This allows for the alignment of pair entropy isotherms and allows for a simple mapping of pressure onto composition. Rosenfeld-scaling implies that pair entropy is semiquantitatively related to the transport properties. At a given temperature, equivalent state points in bulk H2O and LiCl-H2O (at 1 atm) are defined as those for which the pair entropy, diffusivity, and viscosity are nearly identical. The microscopic basis for this equivalence lies in the ability of both pressure and ions to convert the liquid phase into a pair-dominated fluid, as demonstrated by the O-O-O angular distribution within the first coordination shell of a water molecule. There are, however, sharp differences in local order and mechanisms for the breakdown of tetrahedral order by pressure and electrolytes. Increasing pressure increases orientational disorder within the first neighbour shell while addition of ions shifts local orientational order from tetrahedral to close-packed as water molecules get incorporated in ionic hydration shells. The variations in local order within the first hydration shell may underlie ion-specific effects, such as the Hofmeister series.

15.
J Phys Chem B ; 120(8): 1649-59, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26426477

RESUMO

Water, silicon, silica, and other liquids that favor tetrahedral order display thermodynamic, dynamic, and structural anomalies in the pressure range in which they form tetrahedrally coordinated crystals. The tetrahedral order in these liquids is induced by anisotropic hydrogen bonding or covalent interactions, or, in ionic melts, by an appropriate size ratio of the ions. Simple isotropic two-length scale models have been extensively used to understand the origin of anomalies in complex liquids. However, single-component isotropic liquids characterized to date generally do not stabilize tetrahedral crystals, and in the few cases that they do, it was found that the liquids do not display anomalies in the region of the tetrahedral crystal. This poses the question of whether it is possible for isotropic pair potentials to display water-like phase behavior and anomalies. In this work, we use molecular dynamics simulations to investigate the phase behavior and the existence and loci of anomalies of a single-component purely repulsive isotropic pair potential that stabilizes diamond in the ground state over a wide range of pressures. We demonstrate that, akin to water, silica, and silicon, the isotropic potential of Marcotte, Stillinger, and Torquato (MST) presents structural, dynamic, and thermodynamic anomalies in the region of stability of the tetrahedral crystal. The regions of anomalies of MST are nested in the T-p plane following the same hierarchy as in silica: the region of diffusional anomalies encloses the region of structural anomalies, which in turn contains the region of thermodynamic anomalies. To our knowledge, MST is the first example of pair potential for which water-like anomalies are associated with the formation of tetrahedral order.

16.
J Chem Phys ; 145(21): 214502, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-28799375

RESUMO

We use molecular dynamics simulations to compare and contrast the liquid-state anomalies in the Stillinger-Weber models of monatomic water (mW), silicon (Si), and germanium (Ge) over a fairly wide range of temperatures and densities. The relationships between structure, entropy, and mobility, as well as the extent of the regions of anomalous behavior, are discussed as a function of the degree of tetrahedrality. We map out the cascade of density, structural, pair entropy, excess entropy, viscosity, and diffusivity anomalies for these three liquids. Among the three liquids studied here, only mW displays anomalies in the thermal conductivity, and this anomaly is evident only at very low temperatures. Diffusivity and viscosity, on the other hand, show pronounced anomalous regions for the three liquids. The temperature of maximum density of the three liquids shows re-entrant behavior consistent with either singularity-free or liquid-liquid critical point scenarios proposed to explain thermodynamic anomalies. The order-map, which shows the evolution of translational versus tetrahedral order in liquids, is different for Ge than for Si and mW. We find that although the monatomic water reproduces several thermodynamic and dynamic properties of rigid-body water models (e.g., SPC/E, TIP4P/2005), its sequence of anomalies follows, the same as Si and Ge, the silica-like hierarchy: the region of dynamic (diffusivity and viscosity) anomalies encloses the region of structural anomalies, which in turn encloses the region of density anomaly. The hierarchy of the anomalies based on excess entropy and Rosenfeld scaling, on the other hand, reverses the order of the structural and dynamic anomalies, i.e., predicts that the three Stillinger-Weber liquids follow a water-like hierarchy of anomalies. We investigate the scaling of diffusivity, viscosity, and thermal conductivity with the excess entropy of the liquid and find that for dynamical properties that present anomalies there is no universal scaling of the reduced property with excess entropy for the whole range of temperatures and densities. Instead, Rosenfeld's scaling holds for all the three liquids at high densities and high temperatures, although deviations from simple exponential dependence are observed for diffusivity and viscosity at lower temperatures and intermediate densities. The slope of the scaling of transport properties obtained for Ge is comparable to that obtained for simple liquids, suggesting that this low tetrahedrality liquid, although it stabilizes a diamond crystal, is already close to simple liquid behavior for certain properties.

17.
J Chem Phys ; 143(16): 164512, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26520532

RESUMO

Molecular dynamics simulations are used to contrast the supercooling and crystallization behaviour of monatomic liquids that exemplify the transition from simple to anomalous, tetrahedral liquids. As examples of simple fluids, we use the Lennard-Jones (LJ) liquid and a pair-dominated Stillinger-Weber liquid (SW16). As examples of tetrahedral, water-like fluids, we use the Stillinger-Weber model with variable tetrahedrality parameterized for germanium (SW20), silicon (SW21), and water (SW(23.15) or mW model). The thermodynamic response functions show clear qualitative differences between simple and water-like liquids. For simple liquids, the compressibility and the heat capacity remain small on isobaric cooling. The tetrahedral liquids in contrast show a very sharp rise in these two response functions as the lower limit of liquid-phase stability is reached. While the thermal expansivity decreases with temperature but never crosses zero in simple liquids, in all three tetrahedral liquids at the studied pressure, there is a temperature of maximum density below which thermal expansivity is negative. In contrast to the thermodynamic response functions, the excess entropy on isobaric cooling does not show qualitatively different features for simple and water-like liquids; however, the slope and curvature of the entropy-temperature plots reflect the heat capacity trends. Two trajectory-based computational estimation methods for the entropy and the heat capacity are compared for possible structural insights into supercooling, with the entropy obtained from thermodynamic integration. The two-phase thermodynamic estimator for the excess entropy proves to be fairly accurate in comparison to the excess entropy values obtained by thermodynamic integration, for all five Lennard-Jones and Stillinger-Weber liquids. The entropy estimator based on the multiparticle correlation expansion that accounts for both pair and triplet correlations, denoted by S(trip), is also studied. S(trip) is a good entropy estimator for liquids where pair and triplet correlations are important such as Ge and Si, but loses accuracy for purely pair-dominated liquids, like LJ fluid, or near the crystallization temperature (T(thr)). Since local tetrahedral order is compatible with both liquid and crystalline states, the reorganisation of tetrahedral liquids is accompanied by a clear rise in the pair, triplet, and thermodynamic contributions to the heat capacity, resulting in the heat capacity anomaly. In contrast, the pair-dominated liquids show increasing dominance of triplet correlations on approaching crystallization but no sharp rise in either the pair or thermodynamic heat capacities.

18.
J Phys Chem B ; 119(34): 11106-20, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26132437

RESUMO

Replica exchange molecular dynamics is used to study the effect of different rigid-body (mTIP3P, TIP4P, SPC/E) and hybrid (H1.56, H3.00) water models on the conformational free energy landscape of the alanine oligopeptides (acAnme and acA5nme), in conjunction with the CHARMM22 force field. The free energy landscape is mapped out as a function of the Ramachandran angles. In addition, various secondary structure metrics, solvation shell properties, and the number of peptide-solvent hydrogen bonds are monitored. Alanine dipeptide is found to have similar free energy landscapes in different solvent models, an insensitivity which may be due to the absence of possibilities for forming i-(i + 4) or i-(i + 3) intrapeptide hydrogen bonds. The pentapeptide, acA5nme, where there are three intrapeptide backbone hydrogen bonds, shows a conformational free energy landscape with a much greater degree of sensitivity to the choice of solvent model, though the three rigid-body water models differ only quantitatively. The pentapeptide prefers nonhelical, non-native PPII and ß-sheet populations as the solvent is changed from SPC/E to the less tetrahedral liquid (H1.56) to an LJ-like liquid (H3.00). The pentapeptide conformational order metrics indicate a preference for open, solvent-exposed, non-native structures in hybrid solvent models at all temperatures of study. The possible correlations between the properties of solvent models and secondary structure preferences of alanine oligopeptides are discussed, and the competition between intrapeptide, peptide-solvent, and solvent-solvent hydrogen bonding is shown to be crucial in the relative free energies of different conformers.


Assuntos
Alanina/química , Modelos Teóricos , Oligopeptídeos/química , Termodinâmica , Água/química
19.
J Chem Phys ; 141(17): 174504, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25381528

RESUMO

Triplet correlations have been shown to play a crucial role in the transformation of simple liquids to anomalous tetrahedral fluids [M. Singh, D. Dhabal, A. H. Nguyen, V. Molinero, and C. Chakravarty, Phys. Rev. Lett. 112, 147801 (2014)]. Here we examine triplet correlation functions for water, arguably the most important tetrahedral liquid, under ambient conditions, using configurational ensembles derived from molecular dynamics (MD) simulations and reverse Monte Carlo (RMC) datasets fitted to experimental scattering data. Four different RMC data sets with widely varying hydrogen-bond topologies fitted to neutron and x-ray scattering data are considered [K. T. Wikfeldt, M. Leetmaa, M. P. Ljungberg, A. Nilsson, and L. G. M. Pettersson, J. Phys. Chem. B 113, 6246 (2009)]. Molecular dynamics simulations are performed for two rigid-body effective pair potentials (SPC/E and TIP4P/2005) and the monatomic water (mW) model. Triplet correlation functions are compared with other structural measures for tetrahedrality, such as the O-O-O angular distribution function and the local tetrahedral order distributions. In contrast to the pair correlation functions, which are identical for all the RMC ensembles, the O-O-O triplet correlation function can discriminate between ensembles with different degrees of tetrahedral network formation with the maximally symmetric, tetrahedral SYM dataset displaying distinct signatures of tetrahedrality similar to those obtained from atomistic simulations of the SPC/E model. Triplet correlations from the RMC datasets conform closely to the Kirkwood superposition approximation, while those from MD simulations show deviations within the first two neighbour shells. The possibilities for experimental estimation of triplet correlations of water and other tetrahedral liquids are discussed.

20.
J Chem Phys ; 141(15): 154904, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25338910

RESUMO

Fluctuations within the ligand shell of a nanoparticle give rise to a significant degree of anisotropy in effective pair interactions for low grafting densities [B. Bozorgui, D. Meng, S. K. Kumar, C. Chakravarty, and A. Cacciuto, Nano Lett. 13, 2732 (2013)]. Here, we examine the corresponding fluctuation-driven anisotropy for gold nanocrystals densely passivated with short ligands. In particular, we consider gold nanocrystals capped by alkylthiols, both in vacuum and in ethane solvent at high density. As in the preceding study, we show that the anisotropy in the nanoparticle pair potential can be quantified by an angle-dependent correction term to the isotropic potential of mean force (PMF). We find that the anisotropy of the ligand shells is distance dependent, and strongly influenced by ligand interdigitation effects as well as expulsion of ligand chains from the interparticle region at short distances. Such fluctuation-driven anisotropy can be significant for alkylthiol-coated gold nanoparticles, specially for longer chain lengths, under good solvent conditions. The consequences of such anisotropy for self-assembly, specially as a function of grafting density, solvent quality and at interfaces, should provide some interesting insights in future work. Our results clearly show that an isotropic two-body PMF cannot adequately describe the thermodynamics and assembly behavior of nanoparticles in this dense grafting regime and inclusion of anisotropic effects, as well as possibly many-body interactions, is necessary. Extensions of this approach to other passivated nanoparticle systems and implications for self-assembly are considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...