Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(5): e0232788, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32384109

RESUMO

High-speed imaging equipment can be an expensive investment, especially when certain applications require custom solutions. In this paper, we present a low-cost high-speed prototype camera built on a low-end Zynq-7000 System-on-Chip (SoC) platform and off-the-shelf components with the aim of removing the entry barrier into various high-speed imaging applications. The camera is standalone (does not require a host computer) and can achieve 211 frames per second (fps) at its maximum resolution of 1280x1024, and up to 2329 fps at a 256x256 resolution. With a current cost of only several hundred dollars and resource utilization of ~5%, the open-source design's modularity and customizability allows users with sufficient hardware or programming experience to modify the camera to suit their needs, potentially driving the cost lower. This can be done by utilizing the large remaining programmable logic for custom image processing algorithms, creating user interface software on the CPU, attaching extensions through the peripheral Module connections, or creating custom carrier or daughter boards. The development and design of the camera is described and a figure-of-merit is presented to provide a value assessment of some available commercial high-speed cameras against which our camera is competitive. Finally, the camera was tested to record low frequency spatial vibration and was found to be useful in investigating phenotypes associated with aging in a leading animal model, the nematode (worm) Caenorhabditis elegans.


Assuntos
Caenorhabditis elegans/anatomia & histologia , Processamento de Imagem Assistida por Computador/instrumentação , Software , Gravação em Vídeo/instrumentação , Animais , Caenorhabditis elegans/fisiologia , Desenho de Equipamento , Modelos Animais , Fenótipo , Gravação em Vídeo/economia
2.
Sensors (Basel) ; 19(22)2019 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-31744258

RESUMO

Positron emission tomography (PET) imaging is an essential tool in clinical applications for the diagnosis of diseases due to its ability to acquire functional images to help differentiate between metabolic and biological activities at the molecular level. One key limiting factor in the development of efficient and accurate PET systems is the sensor technology in the PET detector. There are generally four types of sensor technologies employed: photomultiplier tubes (PMTs), avalanche photodiodes (APDs), silicon photomultipliers (SiPMs), and cadmium zinc telluride (CZT) detectors. PMTs were widely used for PET applications in the early days due to their excellent performance metrics of high gain, low noise, and fast timing. However, the fragility and bulkiness of the PMT glass tubes, high operating voltage, and sensitivity to magnetic fields ultimately limit this technology for future cost-effective and multi-modal systems. As a result, solid-state photodetectors like the APD, SiPM, and CZT detectors, and their applications for PET systems, have attracted lots of research interest, especially owing to the continual advancements in the semiconductor fabrication process. In this review, we study and discuss the operating principles, key performance parameters, and PET applications for each type of sensor technology with an emphasis on SiPM and CZT detectors-the two most promising types of sensors for future PET systems. We also present the sensor technologies used in commercially available state-of-the-art PET systems. Finally, the strengths and weaknesses of these four types of sensors are compared and the research challenges of SiPM and CZT detectors are discussed and summarized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA