Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 45: 447-469, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35440143

RESUMO

Recombinant adeno-associated viruses (AAVs) are commonly used gene delivery vehicles for neuroscience research. They have two engineerable features: the capsid (outer protein shell) and cargo (encapsulated genome). These features can be modified to enhance cell type or tissue tropism and control transgene expression, respectively. Several engineered AAV capsids with unique tropisms have been identified, including variants with enhanced central nervous system transduction, cell type specificity, and retrograde transport in neurons. Pairing these AAVs with modern gene regulatory elements and state-of-the-art reporter, sensor, and effector cargo enables highly specific transgene expression for anatomical and functional analyses of brain cells and circuits. Here, we discuss recent advances that provide a comprehensive (capsid and cargo) AAV toolkit for genetic access to molecularly defined brain cell types.


Assuntos
Dependovirus , Vetores Genéticos , Encéfalo , Capsídeo/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes
2.
Neuron ; 110(5): 809-823.e5, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34986325

RESUMO

Whether glutamate or itch-selective neurotransmitters are used to confer itch specificity is still under debate. We focused on an itch-selective population of primary afferents expressing MRGPRA3, which highly expresses Vglut2 and the neuropeptide neuromedin B (Nmb), to investigate this question. Optogenetic stimulation of MRGPRA3+ afferents triggers scratching and other itch-related avoidance behaviors. Using a combination of optogenetics, spinal cord slice recordings, Vglut2 conditional knockout mice, and behavior assays, we showed that glutamate is essential for MRGPRA3+ afferents to transmit itch. We further demonstrated that MRGPRA3+ afferents form monosynaptic connections with both NMBR+ and NMBR- neurons and that NMB and glutamate together can enhance the activity of NMBR+ spinal DH neurons. Moreover, Nmb in MRGPRA3+ afferents and NMBR+ DH neurons are required for chloroquine-induced scratching. Together, our results establish a new model in which glutamate is an essential neurotransmitter in primary afferents for itch transmission, whereas NMB signaling enhances its activities.


Assuntos
Ácido Glutâmico , Prurido , Animais , Camundongos , Camundongos Knockout , Neurônios , Prurido/induzido quimicamente , Medula Espinal
3.
J Neurosci ; 41(26): 5620-5637, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34016714

RESUMO

The adult olfactory epithelium (OE) regenerates sensory neurons and nonsensory supporting cells from resident stem cells after injury. How supporting cells contribute to OE regeneration remains largely unknown. In this study, we elucidated a novel role of Ym2 (also known as Chil4 or Chi3l4), a chitinase-like protein expressed in supporting cells, in regulating regeneration of the injured OE in vivo in both male and female mice and cell proliferation/differentiation in OE colonies in vitro We found that Ym2 expression was enhanced in supporting cells after OE injury. Genetic knockdown of Ym2 in supporting cells attenuated recovery of the injured OE, while Ym2 overexpression by lentiviral infection accelerated OE regeneration. Similarly, Ym2 bidirectionally regulated cell proliferation and differentiation in OE colonies. Furthermore, anti-inflammatory treatment reduced Ym2 expression and delayed OE regeneration in vivo and cell proliferation/differentiation in vitro, which were counteracted by Ym2 overexpression. Collectively, this study revealed a novel role of Ym2 in OE regeneration and cell proliferation/differentiation of OE colonies via interaction with inflammatory responses, providing new clues to the function of supporting cells in these processes.SIGNIFICANCE STATEMENT The mammalian olfactory epithelium (OE) is a unique neural tissue that regenerates sensory neurons and nonsensory supporting cells throughout life and postinjury. How supporting cells contribute to this process is not entirely understood. Here we report that OE injury causes upregulation of a chitinase-like protein, Ym2, in supporting cells, which facilitates OE regeneration. Moreover, anti-inflammatory treatment reduces Ym2 expression and delays OE regeneration, which are counteracted by Ym2 overexpression. This study reveals an important role of supporting cells in OE regeneration and provides a critical link between Ym2 and inflammation in this process.


Assuntos
Quitinases/metabolismo , Inflamação/metabolismo , Mucosa Olfatória/fisiologia , Regeneração/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos
4.
Nat Neurosci ; 23(3): 327-336, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066981

RESUMO

Parkinson's disease is a synucleinopathy that is characterized by motor dysfunction, death of midbrain dopaminergic neurons and accumulation of α-synuclein (α-Syn) aggregates. Evidence suggests that α-Syn aggregation can originate in peripheral tissues and progress to the brain via autonomic fibers. We tested this by inoculating the duodenal wall of mice with α-Syn preformed fibrils. Following inoculation, we observed gastrointestinal deficits and physiological changes to the enteric nervous system. Using the AAV-PHP.S capsid to target the lysosomal enzyme glucocerebrosidase for peripheral gene transfer, we found that α-Syn pathology is reduced due to the increased expression of this protein. Lastly, inoculation of α-Syn fibrils in aged mice, but not younger mice, resulted in progression of α-Syn histopathology to the midbrain and subsequent motor defects. Our results characterize peripheral synucleinopathy in prodromal Parkinson's disease and explore cellular mechanisms for the gut-to-brain progression of α-Syn pathology.


Assuntos
Encéfalo/patologia , Doenças do Sistema Digestório/patologia , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia , Animais , Duodeno/patologia , Sistema Nervoso Entérico/patologia , Glucosilceramidase/biossíntese , Glucosilceramidase/genética , Mesencéfalo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/patologia , Fibras Nervosas/patologia , Nociceptividade , Gânglio Nodoso/patologia
5.
Nat Protoc ; 14(8): 2597, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31312046

RESUMO

During the production process, the authors of this paper supplied revised versions of Figs. 2-5, Supplementary Tables 1-4, and Supplementary Videos 1-3, but because of publisher error, these revised items were not included in the final published version of the protocol. The figures have been updated in the PDF and HTML versions of the paper, and the revised Supplementary Information files are now available online. We note that the figures have been revised to improve their resolution only; the content of the figures and the data reflected remain unchanged. Also, print requirements impose some limits on figure resolution, but the authors have made very high-resolution versions of Figs. 2-5 available at as Source data.

6.
Nat Commun ; 10(1): 1944, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31028266

RESUMO

Heart rate is under the precise control of the autonomic nervous system. However, the wiring of peripheral neural circuits that regulate heart rate is poorly understood. Here, we develop a clearing-imaging-analysis pipeline to visualize innervation of intact hearts in 3D and employed a multi-technique approach to map parasympathetic and sympathetic neural circuits that control heart rate in mice. We identify cholinergic neurons and noradrenergic neurons in an intrinsic cardiac ganglion and the stellate ganglia, respectively, that project to the sinoatrial node. We also report that the heart rate response to optogenetic versus electrical stimulation of the vagus nerve displays different temporal characteristics and that vagal afferents enhance parasympathetic and reduce sympathetic tone to the heart via central mechanisms. Our findings provide new insights into neural regulation of heart rate, and our methodology to study cardiac circuits can be readily used to interrogate neural control of other visceral organs.


Assuntos
Frequência Cardíaca/fisiologia , Neurônios Motores/fisiologia , Animais , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Eletrofisiologia , Feminino , Masculino , Camundongos , Sistema Nervoso Periférico/metabolismo , Sistema Nervoso Periférico/fisiologia , Nervo Vago/metabolismo , Nervo Vago/fisiologia
7.
Nat Protoc ; 14(2): 379-414, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30626963

RESUMO

We recently developed adeno-associated virus (AAV) capsids to facilitate efficient and noninvasive gene transfer to the central and peripheral nervous systems. However, a detailed protocol for generating and systemically delivering novel AAV variants was not previously available. In this protocol, we describe how to produce and intravenously administer AAVs to adult mice to specifically label and/or genetically manipulate cells in the nervous system and organs, including the heart. The procedure comprises three separate stages: AAV production, intravenous delivery, and evaluation of transgene expression. The protocol spans 8 d, excluding the time required to assess gene expression, and can be readily adopted by researchers with basic molecular biology, cell culture, and animal work experience. We provide guidelines for experimental design and choice of the capsid, cargo, and viral dose appropriate for the experimental aims. The procedures outlined here are adaptable to diverse biomedical applications, from anatomical and functional mapping to gene expression, silencing, and editing.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/química , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Dependovirus/metabolismo , Trato Gastrointestinal/citologia , Trato Gastrointestinal/metabolismo , Genes Reporter , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Injeções Intravenosas , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Miocárdio/citologia , Miocárdio/metabolismo , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Medula Espinal/citologia , Medula Espinal/metabolismo , Transgenes , Proteína Vermelha Fluorescente
8.
PLoS One ; 11(3): e0150638, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26942602

RESUMO

We recently reported that olfactory sensory neurons in the dorsal zone of the mouse olfactory epithelium exhibit drastic location-dependent differences in cilia length. Furthermore, genetic ablation of type III adenylyl cyclase (ACIII), a key olfactory signaling protein and ubiquitous marker for primary cilia, disrupts the cilia length pattern and results in considerably shorter cilia, independent of odor-induced activity. Given the significant impact of ACIII on cilia length in the dorsal zone, we sought to further investigate the relationship between cilia length and ACIII level in various regions throughout the mouse olfactory epithelium. We employed whole-mount immunohistochemical staining to examine olfactory cilia morphology in phosphodiesterase (PDE) 1C-/-;PDE4A-/- (simplified as PDEs-/- hereafter) and ACIII-/- mice in which ACIII levels are reduced and ablated, respectively. As expected, PDEs-/- animals exhibit dramatically shorter cilia in the dorsal zone (i.e., where the cilia pattern is found), similar to our previous observation in ACIII-/- mice. Remarkably, in a region not included in our previous study, ACIII-/- animals (but not PDEs-/- mice) have dramatically elongated, comet-shaped cilia, as opposed to characteristic star-shaped olfactory cilia. Here, we reveal that genetic ablation of ACIII has drastic, location-dependent effects on cilia architecture in the mouse nose. These results add a new dimension to our current understanding of olfactory cilia structure and regional organization of the olfactory epithelium. Together, these findings have significant implications for both cilia and sensory biology.


Assuntos
Adenilil Ciclases/deficiência , Adenilil Ciclases/genética , Cílios/metabolismo , Deleção de Genes , Nariz/citologia , Animais , Cílios/enzimologia , Camundongos , Nariz/enzimologia , Especificidade de Órgãos , Diester Fosfórico Hidrolases/metabolismo
10.
Curr Biol ; 25(19): 2503-12, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26365258

RESUMO

In many sensory organs, specialized receptors are strategically arranged to enhance detection sensitivity and acuity. It is unclear whether the olfactory system utilizes a similar organizational scheme to facilitate odor detection. Curiously, olfactory sensory neurons (OSNs) in the mouse nose are differentially stimulated depending on the cell location. We therefore asked whether OSNs in different locations evolve unique structural and/or functional features to optimize odor detection and discrimination. Using immunohistochemistry, computational fluid dynamics modeling, and patch clamp recording, we discovered that OSNs situated in highly stimulated regions have much longer cilia and are more sensitive to odorants than those in weakly stimulated regions. Surprisingly, reduction in neuronal excitability or ablation of the olfactory G protein in OSNs does not alter the cilia length pattern, indicating that neither spontaneous nor odor-evoked activity is required for its establishment. Furthermore, the pattern is evident at birth, maintained into adulthood, and restored following pharmacologically induced degeneration of the olfactory epithelium, suggesting that it is intrinsically programmed. Intriguingly, type III adenylyl cyclase (ACIII), a key protein in olfactory signal transduction and ubiquitous marker for primary cilia, exhibits location-dependent gene expression levels, and genetic ablation of ACIII dramatically alters the cilia pattern. These findings reveal an intrinsically programmed configuration in the nose to ensure high sensitivity to odors.


Assuntos
Nariz/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Modelos Anatômicos , Modelos Biológicos , Mucosa Nasal/metabolismo , Odorantes , Neurônios Receptores Olfatórios/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...