Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; : e0145623, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651855

RESUMO

Mycobacterium abscessus is an emerging opportunistic pathogen responsible for chronic lung diseases, especially in patients with cystic fibrosis. Treatment failure of M. abscessus infections is primarily associated with intrinsic or acquired antibiotic resistance. However, there is growing evidence that antibiotic tolerance, i.e., the ability of bacteria to transiently survive exposure to bactericidal antibiotics through physiological adaptations, contributes to the relapse of chronic infections and the emergence of acquired drug resistance. Yet, our understanding of the molecular mechanisms that underlie antibiotic tolerance in M. abscessus remains limited. In the present work, a mutant with increased cross-tolerance to the first- and second-line antibiotics cefoxitin and moxifloxacin, respectively, has been isolated by experimental evolution. This mutant harbors a mutation in serB2, a gene involved in L-serine biosynthesis. Metabolic changes caused by this mutation alter the intracellular redox balance to a more reduced state that induces overexpression of the transcriptional regulator WhiB7 during the stationary phase, promoting tolerance through activation of a WhiB7-dependant adaptive stress response. These findings suggest that alteration of amino acid metabolism and, more generally, conditions that trigger whiB7 overexpression, makes M. abscessus more tolerant to antibiotic treatment.

2.
PLoS Pathog ; 19(8): e1011559, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37619220

RESUMO

Mycobacterium abscessus (Mabs) drives life-shortening mortality in cystic fibrosis (CF) patients, primarily because of its resistance to chemotherapeutic agents. To date, our knowledge on the host and bacterial determinants driving Mabs pathology in CF patient lung remains rudimentary. Here, we used human airway organoids (AOs) microinjected with smooth (S) or rough (R-)Mabs to evaluate bacteria fitness, host responses to infection, and new treatment efficacy. We show that S Mabs formed biofilm, and R Mabs formed cord serpentines and displayed a higher virulence. While Mabs infection triggers enhanced oxidative stress, pharmacological activation of antioxidant pathways resulted in better control of Mabs growth and reduced virulence. Genetic and pharmacological inhibition of the CFTR is associated with better growth and higher virulence of S and R Mabs. Finally, pharmacological activation of antioxidant pathways inhibited Mabs growth, at least in part through the quinone oxidoreductase NQO1, and improved efficacy in combination with cefoxitin, a first line antibiotic. In conclusion, we have established AOs as a suitable human system to decipher mechanisms of CF-driven respiratory infection by Mabs and propose boosting of the NRF2-NQO1 axis as a potential host-directed strategy to improve Mabs infection control.


Assuntos
Fibrose Cística , Mycobacterium abscessus , Humanos , Fibrose Cística/tratamento farmacológico , Antioxidantes , Oxirredução , Estresse Oxidativo
3.
Nat Microbiol ; 8(9): 1717-1731, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37644325

RESUMO

Mycobacteriophages show promise as therapeutic agents for non-tuberculous mycobacterium infections. However, little is known about phage recognition of Mycobacterium cell surfaces or mechanisms of phage resistance. We show here that trehalose polyphleates (TPPs)-high-molecular-weight, surface-exposed glycolipids found in some mycobacterial species-are required for infection of Mycobacterium abscessus and Mycobacterium smegmatis by clinically useful phages BPs and Muddy. TPP loss leads to defects in adsorption and infection and confers resistance. Transposon mutagenesis shows that TPP disruption is the primary mechanism for phage resistance. Spontaneous phage resistance occurs through TPP loss by mutation, and some M. abscessus clinical isolates are naturally phage-insensitive due to TPP synthesis gene mutations. Both BPs and Muddy become TPP-independent through single amino acid substitutions in their tail spike proteins, and M. abscessus mutants resistant to TPP-independent phages reveal additional resistance mechanisms. Clinical use of BPs and Muddy TPP-independent mutants should preempt phage resistance caused by TPP loss.


Assuntos
Bacteriófagos , Micobacteriófagos , Micobacteriófagos/genética , Trealose , Bacteriófagos/genética , Substituição de Aminoácidos , Membrana Celular
4.
Sci Rep ; 13(1): 7045, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120636

RESUMO

The mycobacterial cell envelope consists of a typical plasma membrane, surrounded by a complex cell wall and a lipid-rich outer membrane. The biogenesis of this multilayer structure is a tightly regulated process requiring the coordinated synthesis and assembly of all its constituents. Mycobacteria grow by polar extension and recent studies showed that cell envelope incorporation of mycolic acids, the major constituent of the cell wall and outer membrane, is coordinated with peptidoglycan biosynthesis at the cell poles. However, there is no information regarding the dynamics of incorporation of other families of outer membrane lipids during cell elongation and division. Here, we establish that the translocation of non-essential trehalose polyphleates (TPP) occurs at different subcellular locations than that of the essential mycolic acids. Using fluorescence microscopy approaches, we investigated the subcellular localization of MmpL3 and MmpL10, respectively involved in the export of mycolic acids and TPP, in growing cells and their colocalization with Wag31, a protein playing a critical role in regulating peptidoglycan biosynthesis in mycobacteria. We found that MmpL3, like Wag31, displays polar localization and preferential accumulation at the old pole whereas MmpL10 is more homogenously distributed in the plasma membrane and slightly accumulates at the new pole. These results led us to propose a model in which insertion of TPP and mycolic acids into the mycomembrane is spatially uncoupled.


Assuntos
Mycobacterium tuberculosis , Mycobacterium , Trealose/metabolismo , Ácidos Micólicos/metabolismo , Peptidoglicano/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Parede Celular/metabolismo , Mycobacterium/metabolismo , Mycobacterium tuberculosis/metabolismo
5.
bioRxiv ; 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-36993724

RESUMO

Mycobacteriophages are good model systems for understanding their bacterial hosts and show promise as therapeutic agents for nontuberculous mycobacterium infections. However, little is known about phage recognition of Mycobacterium cell surfaces, or mechanisms of phage resistance. We show here that surface-exposed trehalose polyphleates (TPPs) are required for infection of Mycobacterium abscessus and Mycobacterium smegmatis by clinically useful phages BPs and Muddy, and that TPP loss leads to defects in adsorption, infection, and confers resistance. Transposon mutagenesis indicates that TPP loss is the primary mechanism for phage resistance. Spontaneous phage resistance occurs through TPP loss, and some M. abscessus clinical isolates are phage-insensitive due to TPP absence. Both BPs and Muddy become TPP-independent through single amino acid substitutions in their tail spike proteins, and M. abscessus mutants resistant to TPP-independent phages reveal additional resistance mechanisms. Clinical use of BPs and Muddy TPP-independent mutants should preempt phage resistance caused by TPP loss.

6.
BMC Biol ; 20(1): 147, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729566

RESUMO

BACKGROUND: Type I polyketide synthases (PKSs) are multifunctional enzymes responsible for the biosynthesis of a group of diverse natural compounds with biotechnological and pharmaceutical interest called polyketides. The diversity of polyketides is impressive despite the limited set of catalytic domains used by PKSs for biosynthesis, leading to considerable interest in deciphering their structure-function relationships, which is challenging due to high intrinsic flexibility. Among nineteen polyketide synthases encoded by the genome of Mycobacterium tuberculosis, Pks13 is the condensase required for the final condensation step of two long acyl chains in the biosynthetic pathway of mycolic acids, essential components of the cell envelope of Corynebacterineae species. It has been validated as a promising druggable target and knowledge of its structure is essential to speed up drug discovery to fight against tuberculosis. RESULTS: We report here a quasi-atomic model of Pks13 obtained using small-angle X-ray scattering of the entire protein and various molecular subspecies combined with known high-resolution structures of Pks13 domains or structural homologues. As a comparison, the low-resolution structures of two other mycobacterial polyketide synthases, Mas and PpsA from Mycobacterium bovis BCG, are also presented. This study highlights a monomeric and elongated state of the enzyme with the apo- and holo-forms being identical at the resolution probed. Catalytic domains are segregated into two parts, which correspond to the condensation reaction per se and to the release of the product, a pivot for the enzyme flexibility being at the interface. The two acyl carrier protein domains are found at opposite sides of the ketosynthase domain and display distinct characteristics in terms of flexibility. CONCLUSIONS: The Pks13 model reported here provides the first structural information on the molecular mechanism of this complex enzyme and opens up new perspectives to develop inhibitors that target the interactions with its enzymatic partners or between catalytic domains within Pks13 itself.


Assuntos
Mycobacterium tuberculosis , Policetídeos , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/genética , Ácidos Micólicos/química , Ácidos Micólicos/metabolismo , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo
7.
Mol Microbiol ; 117(3): 682-692, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34605588

RESUMO

Respiratory infections remain a major global health concern. Tuberculosis is one of the top 10 causes of death worldwide, while infections with Non-Tuberculous Mycobacteria are rising globally. Recent advances in human tissue modeling offer a unique opportunity to grow different human "organs" in vitro, including the human airway, that faithfully recapitulates lung architecture and function. Here, we have explored the potential of human airway organoids (AOs) as a novel system in which to assess the very early steps of mycobacterial infection. We reveal that Mycobacterium tuberculosis (Mtb) and Mycobacterium abscessus (Mabs) mainly reside as extracellular bacteria and infect epithelial cells with very low efficiency. While the AO microenvironment was able to control, but not eliminate Mtb, Mabs thrives. We demonstrate that AOs responded to infection by modulating cytokine, antimicrobial peptide, and mucin gene expression. Given the importance of myeloid cells in mycobacterial infection, we co-cultured infected AOs with human monocyte-derived macrophages and found that these cells interact with the organoid epithelium. We conclude that adult stem cell (ASC)-derived AOs can be used to decipher very early events of mycobacteria infection in human settings thus offering new avenues for fundamental and therapeutic research.


Assuntos
Mycobacterium abscessus , Mycobacterium tuberculosis , Tuberculose , Humanos , Macrófagos/microbiologia , Micobactérias não Tuberculosas , Organoides , Tuberculose/microbiologia
8.
Sci Rep ; 11(1): 18042, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508141

RESUMO

Owing to their role in activating enzymes essential for bacterial viability and pathogenicity, phosphopantetheinyl transferases represent novel and attractive drug targets. In this work, we examined the inhibitory effect of the aminido-urea 8918 compound against the phosphopantetheinyl transferases PptAb from Mycobacterium abscessus and PcpS from Pseudomonas aeruginosa, two pathogenic bacteria associated with cystic fibrosis and bronchiectasis, respectively. Compound 8918 exhibits inhibitory activity against PptAb but displays no activity against PcpS in vitro, while no antimicrobial activity against Mycobacterium abscessus or Pseudomonas aeruginosa could be detected. X-ray crystallographic analysis of 8918 bound to PptAb-CoA alone and in complex with an acyl carrier protein domain in addition to the crystal structure of PcpS in complex with CoA revealed the structural basis for the inhibition mechanism of PptAb by 8918 and its ineffectiveness against PcpS. Finally, in crystallo screening of potent inhibitors from the National Cancer Institute library identified a hydroxypyrimidinethione derivative that binds PptAb. Both compounds could serve as scaffolds for the future development of phosphopantetheinyl transferases inhibitors.


Assuntos
Proteínas de Bactérias/química , Inibidores Enzimáticos/química , Pirimidinonas/química , Transferases (Outros Grupos de Fosfato Substituídos)/química , Ureia/química , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Inibidores Enzimáticos/farmacologia , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mycobacterium abscessus/enzimologia , Ligação Proteica , Pseudomonas aeruginosa/enzimologia , Proteínas Recombinantes , Relação Estrutura-Atividade , Especificidade por Substrato , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Ureia/análogos & derivados , Ureia/farmacologia
9.
ACS Chem Biol ; 15(12): 3206-3216, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33237724

RESUMO

Mycobacterium tuberculosis is the causative agent of the tuberculosis disease, which claims more human lives each year than any other bacterial pathogen. M. tuberculosis and other mycobacterial pathogens have developed a range of unique features that enhance their virulence and promote their survival in the human host. Among these features lies the particular cell envelope with high lipid content, which plays a substantial role in mycobacterial pathogenicity. Several envelope components of M. tuberculosis and other mycobacteria, e.g., mycolic acids, phthiocerol dimycocerosates, and phenolic glycolipids, belong to the "family" of polyketides, secondary metabolites synthesized by fascinating versatile enzymes-polyketide synthases. These megasynthases consist of multiple catalytic domains, among which the acyltransferase domain plays a key role in selecting and transferring the substrates required for polyketide extension. Here, we present three new crystal structures of acyltransferase domains of mycobacterial polyketide synthases and, for one of them, provide evidence for the identification of residues determining extender unit specificity. Unravelling the molecular basis for such specificity is of high importance considering the role played by extender units for the final structure of key mycobacterial components. This work provides major advances for the use of mycobacterial polyketide synthases as potential therapeutic targets and, more generally, contributes to the prediction and bioengineering of polyketide synthases with desired specificity.


Assuntos
Mycobacterium/enzimologia , Policetídeo Sintases/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Humanos , Policetídeo Sintases/química , Conformação Proteica , Especificidade por Substrato
10.
Artigo em Inglês | MEDLINE | ID: mdl-32923411

RESUMO

Mycobacterium tuberculosis (Mtb) synthesizes a variety of atypical lipids that are exposed at the cell surface and help the bacterium infect macrophages and escape elimination by the cell's immune responses. In the present study, we investigate the mechanism of action of one family of hydrophobic lipids, the phthiocerol dimycocerosates (DIM/PDIM), major lipid virulence factors. DIM are transferred from the envelope of Mtb to host membranes during infection. Using the polarity-sensitive fluorophore C-Laurdan, we visualized that DIM decrease the membrane polarity of a supported lipid bilayer put in contact with mycobacteria, even beyond the site of contact. We observed that DIM activate the complement receptor 3, a predominant receptor for phagocytosis of Mtb by macrophages. DIM also increased the activity of membrane-permeabilizing effectors of Mtb, among which the virulence factor EsxA. This is consistent with previous observations that DIM help Mtb disrupt host cell membranes. Taken together, our data show that transferred DIM spread within the target membrane, modify its physical properties and increase the activity of host cell receptors and bacterial effectors, diverting in a non-specific manner host cell functions. We therefore bring new insight into the molecular mechanisms by which DIM increase Mtb's capability to escape the cell's immune responses.


Assuntos
Mycobacterium tuberculosis , Lipídeos , Macrófagos , Fagocitose
11.
J Biol Chem ; 295(32): 11184-11194, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32554804

RESUMO

Trehalose polyphleates (TPP) are high-molecular-weight, surface-exposed glycolipids present in a broad range of nontuberculous mycobacteria. These compounds consist of a trehalose core bearing polyunsaturated fatty acyl substituents (called phleic acids) and a straight-chain fatty acid residue and share a common basic structure with trehalose-based glycolipids produced by Mycobacterium tuberculosis TPP production starts in the cytosol with the formation of a diacyltrehalose intermediate. An acyltransferase, called PE, subsequently catalyzes the transfer of phleic acids onto diacyltrehalose to form TPP, and an MmpL transporter promotes the export of TPP or its precursor across the plasma membrane. PE is predicted to be an anchored membrane protein, but its topological organization is unknown, raising questions about the subcellular localization of the final stage of TPP biosynthesis and the chemical nature of the substrates that are translocated by the MmpL transporter. Here, using genetic, biochemical, and proteomic approaches, we established that PE of Mycobacterium smegmatis is exported to the cell envelope following cleavage of its signal peptide and that this process is required for TPP biosynthesis, indicating that the last step of TPP formation occurs in the outer layers of the mycobacterial cell envelope. These results provide detailed insights into the molecular mechanisms controlling TPP formation and transport to the cell surface, enabling us to propose an updated model of the TPP biosynthetic pathway. Because the molecular mechanisms of glycolipid production are conserved among mycobacteria, these findings obtained with PE from M. smegmatis may offer clues to glycolipid formation in M. tuberculosis.


Assuntos
Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Trealose/metabolismo , Membrana Celular/metabolismo , Glicolipídeos/metabolismo , Proteólise , Frações Subcelulares/metabolismo
12.
FEBS J ; 287(21): 4729-4746, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32128972

RESUMO

One central question surrounding the biosynthesis of fatty acids and polyketide-derived natural products is how the 4'-phosphopantetheinyl transferase (PPTase) interrogates the essential acyl carrier protein (ACP) domain to fulfill the initial activation step. The triggering factor of this study was the lack of structural information on PPTases at physiological pH, which could bias our comprehension of the mechanism of action of these important enzymes. Structural and functional studies on the family II PPTase PptAb of Mycobacterium abscessus show that pH has a profound effect on the coordination of metal ions and on the conformation of endogenously bound coenzyme A (CoA). The observed conformational flexibility of CoA at physiological pH is accompanied by a disordered 4'-phosphopantetheine (Ppant) moiety. Finally, structural and dynamical information on an isolated mycobacterial ACP domain, in its apo form and in complex with the activator PptAb, suggests an alternate mechanism for the post-translational modification of modular megasynthases.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/metabolismo , Coenzima A/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Proteína de Transporte de Acila/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Coenzima A/química , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Cinética , Mycobacterium abscessus/enzimologia , Mycobacterium abscessus/genética , Ligação Proteica , Conformação Proteica , Processamento de Proteína Pós-Traducional , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética
13.
Cell Microbiol ; 19(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28095608

RESUMO

Although phthiocerol dimycocerosates (DIM) are major virulence factors of Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, little is known about their mechanism of action. Localized in the outer membrane of mycobacterial pathogens, DIM are predicted to interact with host cell membranes. Interaction with eukaryotic membranes is a property shared with another virulence factor of Mtb, the early secretory antigenic target EsxA (also known as ESAT-6). This small protein, which is secreted by the type VII secretion system ESX-1 (T7SS/ESX-1), is involved in phagosomal rupture and cell death induced by virulent mycobacteria inside host phagocytes. In this work, by the use of several knock-out or knock-in mutants of Mtb or Mycobacterium bovis BCG strains and different cell biological assays, we present conclusive evidence that ESX-1 and DIM act in concert to induce phagosomal membrane damage and rupture in infected macrophages, ultimately leading to host cell apoptosis. These results identify an as yet unknown function for DIM in the infection process and open up a new research field for the study of the interaction of lipid and protein virulence factors of Mtb.


Assuntos
Antígenos de Bactérias/metabolismo , Apoptose/fisiologia , Proteínas de Bactérias/metabolismo , Lipídeos/fisiologia , Macrófagos/metabolismo , Mycobacterium bovis/patogenicidade , Mycobacterium tuberculosis/patogenicidade , Fagossomos/metabolismo , Linhagem Celular Tumoral , Membrana Celular/patologia , Humanos , Macrófagos/microbiologia , Fagossomos/microbiologia , Células THP-1 , Fatores de Virulência
14.
Tuberculosis (Edinb) ; 100: 32-45, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27553408

RESUMO

Mycobacteria produce a large variety of surface-exposed lipids with unusual structures. Some of these compounds are ubiquitously present in mycobacteria and play an important role in the structural organization of the cell envelope, while others are species-specific. The biosynthesis of most of these lipids requires modular polyketide synthases (PKS) or non-ribosomal peptide synthetases (NRPS) that are intracellular, suggesting that the assembly of these compounds takes place in the cytosolic compartment or near the inner leaflet of the plasma membrane. The molecular mechanisms that mediate the export of these lipid components across the cell envelope remain poorly understood. Mycobacterial membrane protein Large (MmpL) transporters, a subclass of Resistance-Nodulation-Cell Division (RND) transporters, appear to play a major role in this process, acting as scaffold proteins that couple lipid synthesis and transport. Recent studies have shown that this family of transporters also contributes to siderophore secretion in Mycobacterium tuberculosis. The goal of this review is to provide the most recent advances in our understanding of the molecular mechanisms involved in lipid and siderophore transport mediated by MmpL transporters.


Assuntos
Lipídeos de Membrana/metabolismo , Mycobacterium/metabolismo , Proteína Proteolipídica de Mielina/fisiologia , Sideróforos/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico/genética , Parede Celular/metabolismo , Genes Bacterianos , Humanos , Proteínas de Membrana Transportadoras/fisiologia , Mycobacterium/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteína Proteolipídica de Mielina/genética , Relação Estrutura-Atividade
15.
Cell Chem Biol ; 23(2): 278-289, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-27028886

RESUMO

Mycobacteria synthesize a variety of structurally related glycolipids with major biological functions. Common themes have emerged for the biosynthesis of these glycolipids, including several families of proteins. Genes encoding these proteins are usually clustered on bacterial chromosomal islets dedicated to the synthesis of one glycolipid family. Here, we investigated the function of a cluster of five genes widely distributed across non-tuberculous mycobacteria. Using defined mutant analysis and in-depth structural characterization of glycolipids from wild-type or mutant strains of Mycobacterium smegmatis and Mycobacterium abscessus, we established that they are involved in the formation of trehalose polyphleates (TPP), a family of compounds originally described in Mycobacterium phlei. Comparative genomics and lipid analysis of strains distributed along the mycobacterial phylogenetic tree revealed that TPP is synthesized by a large number of non-tuberculous mycobacteria. This work unravels a novel glycolipid biosynthetic pathway in mycobacteria and extends the spectrum of bacteria that produce TPP.


Assuntos
Glicolipídeos/biossíntese , Mycobacterium/classificação , Mycobacterium/metabolismo , Filogenia , Trealose/análogos & derivados , Trealose/biossíntese , Glicolipídeos/química , Glicolipídeos/genética , Mycobacterium/química , Mycobacterium/genética , Trealose/química
16.
Chem Biol ; 21(12): 1660-9, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25467124

RESUMO

Mycolate-containing compounds constitute major strategic elements of the protective coat surrounding the tubercle bacillus. We have previously shown that FAAL32-Pks13 polyketide synthase catalyzes the condensation reaction, which produces α-alkyl ß-ketoacids, direct precursors of mycolic acids. In contrast to the current biosynthesis model, we show here that Pks13 catalyzes itself the release of the neosynthesized products and demonstrate that this function is carried by its thioesterase-like domain. Most importantly, in agreement with the prediction of a trehalose-binding pocket in its catalytic site, this domain exhibits an acyltransferase activity and transfers Pks13's products onto an acceptor molecule, mainly trehalose, leading to the formation of the trehalose monomycolate precursor. Thus, this work allows elucidation of the hinge step of the mycolate-containing compound biosynthesis pathway. Above all, it highlights a unique mechanism of transfer of polyketide synthase products in mycobacteria, which is distinct from the conventional intervention of the discrete polyketide-associated protein (Pap)-type acyltransferases.


Assuntos
Proteínas de Bactérias/metabolismo , Biocatálise , Ácidos Micólicos/metabolismo , Policetídeo Sintases/metabolismo , Aciltransferases/metabolismo , Proteínas de Bactérias/química , Modelos Moleculares , Policetídeo Sintases/química , Polímeros/metabolismo , Estrutura Terciária de Proteína , Especificidade por Substrato , Trealose/metabolismo
17.
J Struct Biol ; 183(3): 320-328, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23916562

RESUMO

The need for early-on diagnostic tools to assess the folding and solubility of expressed protein constructs in vivo is of great interest when dealing with recalcitrant proteins. In this paper, we took advantage of the picomolar sensitivity of the bipartite GFP1-10/GFP11 system to investigate the solubility of the Mycobacterium tuberculosis 4'-phosphopantetheinyl transferase PptT, an enzyme essential for the viability of the tubercle bacillus. In vivo and in vitro complementation assays clearly showed the improved solubility of the full-length PptT compared to its N- and C-terminally truncated counterparts. However, initial attempts to purify the full-length enzyme overexpressed in Escherichia coli cells were hampered by aggregation issues overtime that caused the protein to precipitate within hours. The fact that the naturally occurring Coenzyme A and Mg(2+), essentials for PptT to carry out its function, could play a role in stabilizing the enzyme was confirmed using DSF experiments. In vitro activity assays were performed using the ACP substrate from the type I polyketide synthase PpsC from M. tuberculosis, a 2188 amino-acid enzyme that plays a major role in the virulence and pathogenicity of this microbial pathogen. We selected the most soluble and compact ACP fragment (2042-2188), identified by genetic selection of in-frame fragments from random library experiments, to monitor the transfer of the P-pant moiety from Coenzyme A onto a conserved serine residue of this ACP domain.


Assuntos
Proteínas de Bactérias/biossíntese , Mycobacterium tuberculosis/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/biossíntese , Proteína de Transporte de Acila/química , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Clonagem Molecular , Coenzima A/química , Estabilidade Enzimática , Escherichia coli , Expressão Gênica , Proteínas de Fluorescência Verde/biossíntese , Magnésio/química , Dobramento de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Solubilidade , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/isolamento & purificação
18.
PLoS Pathog ; 9(7): e1003437, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23853582

RESUMO

In Escherichia coli, the biosynthetic pathways of several small iron-scavenging molecules known as siderophores (enterobactin, salmochelins and yersiniabactin) and of a genotoxin (colibactin) are known to require a 4'-phosphopantetheinyl transferase (PPTase). Only two PPTases have been clearly identified: EntD and ClbA. The gene coding for EntD is part of the core genome of E. coli, whereas ClbA is encoded on the pks pathogenicity island which codes for colibactin. Interestingly, the pks island is physically associated with the high pathogenicity island (HPI) in a subset of highly virulent E. coli strains. The HPI carries the gene cluster required for yersiniabactin synthesis except for a gene coding its cognate PPTase. Here we investigated a potential interplay between the synthesis pathways leading to the production of siderophores and colibactin, through a functional interchangeability between EntD and ClbA. We demonstrated that ClbA could contribute to siderophores synthesis. Inactivation of both entD and clbA abolished the virulence of extra-intestinal pathogenic E. coli (ExPEC) in a mouse sepsis model, and the presence of either functional EntD or ClbA was required for the survival of ExPEC in vivo. This is the first report demonstrating a connection between multiple phosphopantetheinyl-requiring pathways leading to the biosynthesis of functionally distinct secondary metabolites in a given microorganism. Therefore, we hypothesize that the strict association of the pks island with HPI has been selected in highly virulent E. coli because ClbA is a promiscuous PPTase that can contribute to the synthesis of both the genotoxin and siderophores. The data highlight the complex regulatory interaction of various virulence features with different functions. The identification of key points of these networks is not only essential to the understanding of ExPEC virulence but also an attractive and promising target for the development of anti-virulence therapy strategies.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Mutagênicos/metabolismo , Peptídeos/metabolismo , Policetídeos/metabolismo , Sideróforos/biossíntese , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Proteínas de Bactérias/genética , Enterobactina/análogos & derivados , Enterobactina/biossíntese , Escherichia coli/enzimologia , Escherichia coli/patogenicidade , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Feminino , Deleção de Genes , Ilhas Genômicas , Glicopeptídeos/biossíntese , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fenóis/metabolismo , Sepse/metabolismo , Sepse/microbiologia , Tiazóis/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Virulência
19.
PLoS One ; 8(3): e58954, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23536839

RESUMO

Phenolic glycolipids are produced by a very limited number of slow-growing mycobacterial species, most of which are pathogen for humans. In Mycobacterium tuberculosis, the etiologic agent of tuberculosis, these molecules play a role in the pathogenicity by modulating the host immune response during infection. The major variant of phenolic glycolipids produced by M. tuberculosis, named PGL-tb, consists of a large lipid core terminated by a glycosylated aromatic nucleus. The carbohydrate part is composed of three sugar residues, two rhamnosyl units and a terminal fucosyl residue, which is per-O-methylated, and seems to be important for pathogenicity. While most of the genes responsible for the synthesis of the lipid core domain and the saccharide appendage of PGL-tb have been characterized, the enzymes involved in the O-methylation of the fucosyl residue of PGL-tb remain unknown. In this study we report the identification and characterization of the methyltransferases required for the O-methylation of the terminal fucosyl residue of PGL-tb. These enzymes are encoded by genes Rv2954c, Rv2955c and Rv2956. Mutants of M. tuberculosis harboring deletion within these genes were constructed. Purification and analysis of the phenolglycolipids produced by these strains, using a combination of mass spectrometry and NMR spectroscopy, revealed that Rv2954c, Rv2955c and Rv2956 encode the methyltransferases that respectively catalysed the O-methylation of the hydroxyl groups located at positions 3, 4 and 2 of the terminal fucosyl residue of PGL-tb. Our data also suggest that methylation at these positions is a sequential process, starting with position 2, followed by positions 4 and 3.


Assuntos
Glicolipídeos/biossíntese , Metiltransferases/metabolismo , Mycobacterium tuberculosis/metabolismo , Sequência de Aminoácidos , Animais , Catálise , Ordem dos Genes , Glicolipídeos/química , Humanos , Metilação , Metiltransferases/química , Metiltransferases/genética , Dados de Sequência Molecular , Mutação , Mycobacterium tuberculosis/genética , Alinhamento de Sequência
20.
J Biol Chem ; 287(40): 33675-90, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22825853

RESUMO

Pks13 is a type I polyketide synthase involved in the final biosynthesis step of mycolic acids, virulence factors, and essential components of the Mycobacterium tuberculosis envelope. Here, we report the biochemical and structural characterization of a 52-kDa fragment containing the acyltransferase domain of Pks13. This fragment retains the ability to load atypical extender units, unusually long chain acyl-CoA with a predilection for carboxylated substrates. High resolution crystal structures were determined for the apo, palmitoylated, and carboxypalmitoylated forms. Structural conservation with type I polyketide synthases and related fatty-acid synthases also extends to the interdomain connections. Subtle changes could be identified both in the active site and in the upstream and downstream linkers in line with the organization displayed by this singular polyketide synthase. More importantly, the crystallographic analysis illustrated for the first time how a long saturated chain can fit in the core structure of an acyltransferase domain through a dedicated channel. The structures also revealed the unexpected binding of a 12-mer peptide that might provide insight into domain-domain interaction.


Assuntos
Proteínas de Bactérias/química , Policetídeo Sintases/química , Sequência de Aminoácidos , Antibacterianos/síntese química , Proteínas de Bactérias/metabolismo , Ligação Competitiva , Domínio Catalítico , Química Farmacêutica/métodos , Clonagem Molecular , Cristalografia por Raios X/métodos , Desenho de Fármacos , Ligantes , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Policetídeo Sintases/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...