Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 8(1): 206, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34593779

RESUMO

Sclareol, an antifungal specialized metabolite produced by clary sage, Salvia sclarea, is the starting plant natural molecule used for the hemisynthesis of the perfume ingredient ambroxide. Sclareol is mainly produced in clary sage flower calyces; however, the cellular localization of the sclareol biosynthesis remains unknown. To elucidate the site of sclareol biosynthesis, we analyzed its spatial distribution in the clary sage calyx epidermis using laser desorption/ionization mass spectrometry imaging (LDI-FTICR-MSI) and investigated the expression profile of sclareol biosynthesis genes in isolated glandular trichomes (GTs). We showed that sclareol specifically accumulates in GTs' gland cells in which sclareol biosynthesis genes are strongly expressed. We next isolated a glabrous beardless mutant and demonstrate that more than 90% of the sclareol is produced by the large capitate GTs. Feeding experiments, using 1-13C-glucose, and specific enzyme inhibitors further revealed that the methylerythritol-phosphate (MEP) biosynthetic pathway is the main source of isopentenyl diphosphate (IPP) precursor used for the biosynthesis of sclareol. Our findings demonstrate that sclareol is an MEP-derived diterpene produced by large capitate GTs in clary sage emphasing the role of GTs as biofactories dedicated to the production of specialized metabolites.

2.
PLoS One ; 16(7): e0248954, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34288908

RESUMO

A road-map of the genetic and phenotypic diversities in both crops and their wild related species can help identifying valuable genetic resources for further crop breeding. The clary sage (Salvia sclarea L.), a perfume, medicinal and aromatic plant, is used for sclareol production and ornamental purposes. Despite its wide use in the field of cosmetics, the phenotypic and genetic diversity of wild and cultivated clary sages remains to be explored. We characterized the genetic and phenotypic variation of a collection of six wild S. sclarea populations from Croatia, sampled along an altitudinal gradient, and, of populations of three S. sclarea cultivars. We showed low level of genetic diversity for the two S. sclarea traditional cultivars used for essential oil production and for ornamental purposes, respectively. In contrast, a recent cultivar resulting from new breeding methods, which involve hybridizations among several genotypes rather than traditional recurrent selection and self-crosses over time, showed high genetic diversity. We also observed a marked phenotypic differentiation for the ornamental clary sage compared with other cultivated and wild clary sages. Instead, the two cultivars used for essential oil production, a traditional and a recent one, respectively, were not phenotypically differentiated from the wild Croatian populations. Our results also featured some wild populations with high sclareol content and early-flowering phenotypes as good candidates for future breeding programs. This study opens up perspectives for basic research aiming at understanding the impact of breeding methods on clary sage evolution, and highlights interesting avenues for clary breeding programs.


Assuntos
Variação Biológica da População , Variação Genética , Perfumes , Melhoramento Vegetal , Salvia/genética , Óleos Voláteis
3.
Trends Plant Sci ; 25(5): 477-487, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31983619

RESUMO

Plant glandular trichomes are epidermal secretory structures producing various specialized metabolites. These metabolites are involved in plant adaptation to its environment and many of them have remarkable properties exploited by fragrance, flavor, and pharmaceutical industries. The identification of genes controlling glandular trichome development is of high interest to understand how plants produce specialized metabolites. Our knowledge about this developmental process is still limited, but genes controlling glandular trichome initiation and morphogenesis have recently been identified. In particular, R2R3-MYB and HD-ZIP IV transcription factors appear to play essential roles in glandular trichome initiation in Artemisia annua and tomato. In this review, we focus on the results obtained in these two species and we propose genetic regulation models integrating these data.


Assuntos
Artemisia annua , Solanum lycopersicum , Artemisia annua/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tricomas/genética
4.
Biotechnol Biofuels ; 11: 195, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30026810

RESUMO

BACKGROUND: We previously developed several strategies to engineer plants to produce cost-efficient biofuels from plant biomass. Engineered Arabidopsis plants with low xylan and lignin content showed normal growth and improved saccharification efficiency under standard growth conditions. However, it remains to be determined whether these engineered plants perform well under drought stress, which is the primary source of abiotic stress in the field. RESULTS: Upon exposing engineered Arabidopsis plants to severe drought, we observed better survival rates in those with a low degree of xylan acetylation, low lignin, and low xylan content compared to those in wild-type plants. Increased pectic galactan content had no effect on drought tolerance. The drought-tolerant plants exhibited low water loss from leaves, and drought-responsive genes (RD29A, RD29B, DREB2A) were generally up-regulated under drought stress, which did not occur in the well-watered state. When compared with the wild type, plants with low lignin due to expression of QsuB, a 3-dehydroshikimate dehydratase, showed a stronger response to abscisic acid (ABA) in assays for seed germination and stomatal closure. The low-lignin plants also accumulated more ABA in response to drought than the wild-type plants. On the contrary, the drought tolerance in the engineered plants with low xylan content and low xylan acetylation was not associated with differences in ABA content or response compared to the wild type. Surprisingly, we found a significant increase in galactose levels and sugar released from the low xylan-engineered plants under drought stress. CONCLUSIONS: This study shows that plants engineered to accumulate less lignin or xylan are more tolerant to drought and activate drought responses faster than control plants. This is an important finding because it demonstrates that modification of secondary cell walls does not necessarily render the plants less robust in the environment, and it shows that substantial changes in biomass composition can be achieved without compromising plant resilience.

5.
Biotechnol Biofuels ; 11: 2, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29321811

RESUMO

BACKGROUND: Second-generation biofuels produced from biomass can help to decrease dependency on fossil fuels, bringing about many economic and environmental benefits. To make biomass more suitable for biorefinery use, we need a better understanding of plant cell wall biosynthesis. Increasing the ratio of C6 to C5 sugars in the cell wall and decreasing the lignin content are two important targets in engineering of plants that are more suitable for downstream processing for second-generation biofuel production. RESULTS: We have studied the basic mechanisms of cell wall biosynthesis and identified genes involved in biosynthesis of pectic galactan, including the GALS1 galactan synthase and the UDP-galactose/UDP-rhamnose transporter URGT1. We have engineered plants with a more suitable biomass composition by applying these findings, in conjunction with synthetic biology and gene stacking tools. Plants were engineered to have up to fourfold more pectic galactan in stems by overexpressing GALS1, URGT1, and UGE2, a UDP-glucose epimerase. Furthermore, the increased galactan trait was engineered into plants that were already engineered to have low xylan content by restricting xylan biosynthesis to vessels where this polysaccharide is essential. Finally, the high galactan and low xylan traits were stacked with the low lignin trait obtained by expressing the QsuB gene encoding dehydroshikimate dehydratase in lignifying cells. CONCLUSION: The results show that approaches to increasing C6 sugar content, decreasing xylan, and reducing lignin content can be combined in an additive manner. Thus, the engineered lines obtained by this trait-stacking approach have substantially improved properties from the perspective of biofuel production, and they do not show any obvious negative growth effects. The approach used in this study can be readily transferred to bioenergy crop plants.

6.
Plant Physiol ; 176(3): 2472-2495, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29367233

RESUMO

The exchange of signals between cellular compartments coordinates development and differentiation, modulates metabolic pathways, and triggers responses to environmental conditions. The proposed central regulator of plastid-to-nucleus retrograde signaling, GENOMES UNCOUPLED1 (GUN1), is present at very low levels, which has hampered the discovery of its precise molecular function. Here, we show that the Arabidopsis (Arabidopsis thaliana) GUN1 protein accumulates to detectable levels only at very early stages of leaf development, where it functions in the regulation of chloroplast biogenesis. GUN1 mRNA is present at high levels in all tissues, but GUN1 protein undergoes rapid degradation (with an estimated half-life of ∼4 h) in all tissues where chloroplast biogenesis has been completed. The rapid turnover of GUN1 is controlled mainly by the chaperone ClpC1, suggesting degradation of GUN1 by the Clp protease. Degradation of GUN1 slows under stress conditions that alter retrograde signaling, thus ensuring that the plant has sufficient GUN1 protein. We also find that the pentatricopeptide repeat motifs of GUN1 are important determinants of GUN1 stability. Moreover, overexpression of GUN1 causes an early flowering phenotype, suggesting a function of GUN1 in developmental phase transitions beyond chloroplast biogenesis. Taken together, our results provide new insight into the regulation of GUN1 by proteolytic degradation, uncover its function in early chloroplast biogenesis, and suggest a role in developmental phase transitions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Proteínas de Ligação a DNA/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Meia-Vida , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/genética , Plastídeos/metabolismo , Biossíntese de Proteínas , Estabilidade Proteica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...