Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(13): 7483-7493, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31132251

RESUMO

A field test was conducted at a uranium in situ recovery (solution mining) site to evaluate postmining uranium natural attenuation downgradient of an ore zone. Approximately 1 million liters of water from a previously mined ore zone was injected into an unmined ore zone that served as a proxy for a downgradient aquifer, while a well located approximately 23 m away was pumped. After 1 year of pumping, only about 39% of the injected U(VI) was recovered, whereas essentially 100% of coinjected chloride was recovered. A geochemical/transport model was used to simultaneously match the chloride and uranium concentrations at the pumping well while also qualitatively matching aqueous 238U/235U ratios, which reflect uranium removal from solution by reduction. It was concluded that ∼50% of the injected U(VI) was reduced to U(IV), although the reduction capacity in the flow pathways between the injection and production wells was estimated to be nearly exhausted by the end of the test. Estimating the reduction capacity of the downgradient aquifer can inform restoration strategy and offer a useful metric for regulatory decisions concerning the adequacy of restoration. U(VI) reduction should be effectively irreversible in these anoxic environments, which differ greatly from shallow oxic environments where U(IV) is readily reoxidized.


Assuntos
Água Subterrânea , Urânio , Poluentes Radioativos da Água , Mineração
2.
Proc Natl Acad Sci U S A ; 114(8): 1811-1816, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167763

RESUMO

The first significant buildup in atmospheric oxygen, the Great Oxidation Event (GOE), began in the early Paleoproterozoic in association with global glaciations and continued until the end of the Lomagundi carbon isotope excursion ca. 2,060 Ma. The exact timing of and relationships among these events are debated because of poor age constraints and contradictory stratigraphic correlations. Here, we show that the first Paleoproterozoic global glaciation and the onset of the GOE occurred between ca. 2,460 and 2,426 Ma, ∼100 My earlier than previously estimated, based on an age of 2,426 ± 3 Ma for Ongeluk Formation magmatism from the Kaapvaal Craton of southern Africa. This age helps define a key paleomagnetic pole that positions the Kaapvaal Craton at equatorial latitudes of 11° ± 6° at this time. Furthermore, the rise of atmospheric oxygen was not monotonic, but was instead characterized by oscillations, which together with climatic instabilities may have continued over the next ∼200 My until ≤2,250-2,240 Ma. Ongeluk Formation volcanism at ca. 2,426 Ma was part of a large igneous province (LIP) and represents a waning stage in the emplacement of several temporally discrete LIPs across a large low-latitude continental landmass. These LIPs played critical, albeit complex, roles in the rise of oxygen and in both initiating and terminating global glaciations. This series of events invites comparison with the Neoproterozoic oxygen increase and Sturtian Snowball Earth glaciation, which accompanied emplacement of LIPs across supercontinent Rodinia, also positioned at low latitude.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...