Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946472

RESUMO

Ras genes are important oncogenes that are frequently mutated in cancer. Human oncogenic variants exhibit functional distinctions in terms of their representation in different cancer types, impact on cellular targets, and sensitivity to pharmacological treatments. However, how these distinct variants influence and respond to the cellular networks in which they are embedded is poorly understood. To identify novel participants in the complex interplay between Ras genotype and cell interaction networks in vivo, we have developed and tested an experimental framework using a simple vulva development assay in the nematode C. elegans. Using this system, we evaluate a set of Ras oncogenic substitution changes at G12, G13 and Q61. We find that these variants fall into distinct groups based on phenotypic differences, sensitivity to gene dose and inhibition of the downstream kinase MEK, and their response to genetic modulators that influence Ras activity in a non-autonomous manner. Together, our results demonstrate oncogenic C. elegans Ras variants exhibit clear distinctions in how they interface with the vulva development network, and show that extracellular modulators yield variant-restricted effects in vivo.

2.
Genetics ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809718

RESUMO

Gene duplication is an important substrate for the evolution of new gene functions, but the impacts of gene duplicates on their own activities and on the developmental networks in which they act are poorly understood. Here, we use a natural experiment of lin-12/Notch gene duplication within the nematode genus Caenorhabditis, combined with characterization of loss- and gain-of-function mutations, to uncover functional distinctions between the duplicate genes in 1 species (Caenorhabditis briggsae) and their single-copy ortholog in Caenorhabditis elegans. First, using improved genomic sequence and gene model characterization, we confirm that the C. briggsae genome includes 2 complete lin-12 genes, whereas most other genes encoding proteins that participate in the LIN-12 signaling pathway retain a one-to-one orthology with C. elegans. We use CRISPR-mediated genome editing to introduce alleles predicted to cause gain-of-function (gf) or loss-of-function (lf) into each C. briggsae gene and find that the gf mutations uncover functional distinctions not apparent from the lf alleles. Specifically, Cbr-lin-12.1(gf), but not Cbr-lin-12.2(gf), causes developmental defects similar to those observed in Cel-lin-12(gf). In contrast to Cel-lin-12(gf), however, the Cbr-lin-12.1(gf) alleles do not cause dominant phenotypes as compared to the wild type, and the mutant phenotype is observed only when 2 gf alleles are present. Our results demonstrate that gene duplicates can exhibit differential capacities to compensate for each other and to interfere with normal development, and uncover coincident gene duplication and evolution of developmental sensitivity to LIN-12/Notch activity.

3.
Sci Rep ; 13(1): 16285, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770498

RESUMO

Mathematical models of complex systems rely on parameter values to produce a desired behavior. As mathematical and computational models increase in complexity, it becomes correspondingly difficult to find parameter values that satisfy system constraints. We propose a Markov Chain Monte Carlo (MCMC) approach for the problem of constrained model parameter generation by designing a Markov chain that efficiently explores a model's parameter space. We demonstrate the use of our proposed methodology to analyze responses of a newly constructed bistability-constrained model of protein phosphorylation to perturbations in the underlying protein network. Our results suggest that parameter generation for constrained models using MCMC provides powerful tools for modeling-aided analysis of complex natural processes.

4.
Dev Dyn ; 252(9): 1149-1161, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37204056

RESUMO

BACKGROUND: p24/transmembrane Emp24 domain (TMED) proteins are a set of evolutionarily conserved, single pass transmembrane proteins that have been shown to facilitate protein secretion and selection of cargo proteins to transport vesicles in the cellular secretion pathway. However, their functions in animal development are incompletely understood. RESULTS: The C. elegans genome encodes eight identified TMED genes, with at least one member from each defined subfamily (α, ß, γ, δ). TMED gene mutants exhibit a shared set of defects in embryonic viability, animal movement, and vulval morphology. Two γ subfamily genes, tmed-1 and tmed-3, exhibit the ability to compensate for each other, as defects in movement and vulva morphology are only apparent in double mutants. TMED mutants also exhibit a delay in breakdown of basement membrane during vulva development. CONCLUSIONS: The results establish a genetic and experimental framework for the study of TMED gene function in C. elegans, and argue that a functional protein from each subfamily is important for a shared set of developmental processes. A specific function for TMED genes is to facilitate breakdown of the basement membrane between the somatic gonad and vulval epithelial cells, suggesting a role for TMED proteins in tissue reorganization during animal development.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Feminino , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Membrana/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fenótipo , Biomarcadores , Vulva/metabolismo
5.
G3 (Bethesda) ; 12(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35929788

RESUMO

Communication between mesodermal cells and epithelial cells is fundamental to normal animal development and is frequently disrupted in cancer. However, the genes and processes that mediate this communication are incompletely understood. To identify genes that mediate this communication and alter the proliferation of cells with an oncogenic Ras genotype, we carried out a tissue-specific genome-wide RNAi screen in Caenorhabditis elegans animals bearing a let-60(n1046gf) (RasG13E) allele. The screen identifies 24 genes that, when knocked down in adjacent mesodermal tissue, suppress the increased vulval epithelial cell proliferation defect associated with let-60(n1046gf). Importantly, gene knockdown reverts the mutant animals to a wild-type phenotype. Using chimeric animals, we genetically confirm that 2 of the genes function nonautonomously to revert the let-60(n1046gf) phenotype. The effect is genotype restricted, as knockdown does not alter development in a wild type (let-60(+)) or activated EGF receptor (let-23(sa62gf)) background. Although many of the genes identified encode proteins involved in essential cellular processes, including chromatin formation, ribosome function, and mitochondrial ATP metabolism, knockdown does not alter the normal development or function of targeted mesodermal tissues, indicating that the phenotype derives from specific functions performed by these cells. We show that the genes act in a manner distinct from 2 signal ligand classes (EGF and Wnt) known to influence the development of vulval epithelial cells. Altogether, the results identify genes with a novel function in mesodermal cells required for communicating with and promoting the proliferation of adjacent epithelial cells with an activated Ras genotype.


Assuntos
Proteínas de Caenorhabditis elegans , Trifosfato de Adenosina/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Feminino , Proteínas de Helminto/genética , Ligantes , Mutação , Transdução de Sinais/genética , Vulva/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
6.
J Theor Biol ; 517: 110596, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33508328

RESUMO

The development of multicellular organisms relies on correct patterns of cell fates to produce functional tissues in the mature organism. A commonly observed developmental pattern consists of alternating cell fates, where neighboring cells take on distinct cell fates characterized by contrasting gene and protein expression levels, and this cell fate pattern repeats over two or more cells. The patterns produced by these fate decisions are regulated by a small number of highly conserved signaling networks, some of which are mediated by long range diffusible signals and others mediated by local contact-dependent signals. However, it is not completely understood how local and long range signals associated with these networks interact to produce fate patterns that are both robust and flexible. Here we analyze mathematical models to investigate the patterning of cell fates in an array of cells, focusing on a two cell repeating pattern. Bifurcation analysis of a multicellular ODE model, where we consider the cells as discrete compartments, suggests that cells must balance sensitivity to external signals with robustness to perturbations. To focus on the patterning dynamics close to the bifurcation point, we derive a continuum PDE model that integrates local and long range signaling. For those cells with dynamics close to the bifurcation point, sensitivity to long range signals determines how far a pattern extends in space, while the number of local signaling connections determines the type of pattern produced. This investigation provides a general framework for understanding developmental patterning, and how both long range and local signals play a role in generating features observed across biology, such as species differences in nematode vulval development and insect bristle patterning, as well as medically relevant processes such as control of stem cell fate in the intestinal crypt.


Assuntos
Transdução de Sinais , Células-Tronco , Padronização Corporal , Diferenciação Celular
7.
Neoplasia ; 22(10): 484-496, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32818842

RESUMO

Androgen Receptor (AR) signaling is a critical driver of hormone-dependent prostate cancer and has also been proposed to have biological activity in female hormone-dependent cancers, including type I endometrial carcinoma (EMC). In this study, we evaluated the preclinical efficacy of a third-generation AR antagonist, enzalutamide, in a genetic mouse model of EMC, Sprr2f-Cre;Ptenfl/fl. In this model, ablation of Pten in the uterine epithelium leads to localized and distant malignant disease as observed in human EMC. We hypothesized that administering enzalutamide through the diet would temporarily decrease the incidence of invasive and metastatic carcinoma, while prolonged administration would result in development of resistance and loss of efficacy. Short-term treatment with enzalutamide reduced overall tumor burden through increased apoptosis but failed to prevent progression of invasive and metastatic disease. These results suggest that AR signaling may have biphasic, oncogenic and tumor suppressive roles in EMC that are dependent on disease stage. Enzalutamide treatment increased Progesterone Receptor (PR) expression within both stromal and tumor cell compartments. Prolonged administration of enzalutamide decreased apoptosis, increased tumor burden and resulted in the clonal expansion of tumor cells expressing high levels of p53 protein, suggestive of acquired Trp53 mutations. In conclusion, we show that enzalutamide induces apoptosis in EMC but has limited efficacy overall as a single agent. Induction of PR, a negative regulator of endometrial proliferation, suggests that adding progestin therapy to enzalutamide administration may further decrease tumor burden and result in a prolonged response.


Assuntos
Apoptose , Benzamidas/farmacologia , Proteínas Ricas em Prolina do Estrato Córneo/fisiologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Neoplasias do Endométrio/tratamento farmacológico , Nitrilas/farmacologia , PTEN Fosfo-Hidrolase/fisiologia , Feniltioidantoína/farmacologia , Animais , Proliferação de Células , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais , Carga Tumoral
8.
Mol Biol Evol ; 37(5): 1350-1361, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31960924

RESUMO

Comparative genomic sequence analysis has found that the genes for many chromatin-associated proteins are poorly conserved, but the biological consequences of these sequence changes are not understood. Here, we show that four genes identified for an Inappropriate Vulval cell Proliferation (ivp) phenotype in the nematode Caenorhabditis briggsae exhibit distinct functions and genetic interactions when compared with their orthologs in C. elegans. Specifically, we show that the four C. briggsae ivp genes encode the noncanonical histone HTZ-1/H2A.z and three nematode-specific proteins predicted to function in the nucleus. The mutants exhibit ectopic vulval precursor cell proliferation (the multivulva [Muv] phenotype) due to inappropriate expression of the lin-3/EGF gene, and RNAseq analysis suggests a broad role for these ivp genes in transcriptional repression. Importantly, although the C. briggsae phenotypes have parallels with those seen in the C. elegans synMuv system, except for the highly conserved HTZ-1/H2A.z, comparable mutations in C. elegans ivp orthologs do not exhibit synMuv gene interactions or phenotypes. These results demonstrate the evolutionary changes that can underlie conserved biological outputs and argue that proteins critical to repress inappropriate expression from the genome participate in a rapidly evolving functional landscape.


Assuntos
Caenorhabditis/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Animais , Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis/metabolismo , Feminino , Histonas/metabolismo , Proteínas Nucleares/genética , Vulva/crescimento & desenvolvimento
9.
Mech Dev ; 159: 103566, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31398431

RESUMO

Paired box (Pax) proteins function as regulators of coordinated development in organogenesis by controlling factors such as cell growth and differentiation necessary to organize multiple cell types into a single, cohesive organ. Previous work has suggested that Pax transcription factors may regulate diverse cell types through participation in inductive cell-to-cell signaling, which has not been well explored. Here we show that EGL-38, a Pax2/5/8 ortholog, coordinates differentiation of the C. elegans egg-laying system through separate autonomous and non-autonomous functions synchronized by the EGF pathway. We find that EGL-38 protein is expressed at the correct times to both participate in and respond to the EGF pathway specifying uterine ventral (uv1) cell fate, and that EGL-38 is required for uv1 expression of nlp-2 and nlp-7, which are both markers of and participants in uv1 identity. Additionally, we have separated uv1 cell placement and gene expression as distinct hallmarks of uv1 identity and specification, with different dependencies on EGL-38. The parallels between EGL-38 participation in cell signaling events and previous Pax studies argue that coordination of signaling and response to an inductive pathway may be a common feature of Pax protein function.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Fator de Crescimento Epidérmico/metabolismo , Oviposição , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans/genética , Receptores ErbB/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo
10.
Dev Biol ; 444(2): 71-82, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30336114

RESUMO

FACT (facilitates chromatin transcription) is a histone chaperone complex important in genomic processes including transcription, DNA replication, and DNA repair. FACT is composed of two proteins, SSRP1 and SPT16, which are highly conserved across eukaryotes. While the mechanisms for FACT in nucleosome reorganization and its relationship to DNA processes is well established, how these roles impact coordination in multicellular animal development are less well understood. Here we characterize the genes encoding FACT complex proteins in the nematode C. elegans. We show that whereas C. elegans includes one SPT16 gene (spt-16), two genes (hmg-3 and hmg-4) encode SSRP1 proteins. Depletion of FACT complex genes interferes with embryonic cell division and cell cycle timing generally, with anterior pharynx development especially sensitive to these defects. hmg-3 and hmg-4 exhibit redundancy for these maternally-provided embryonic functions, but are each uniquely required zygotically for normal germline development. This work provides a framework to study FACT gene function in developmental processes, and identifies that distinct functional requirements for gene duplicates can be manifest within a single tissue.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Cromatina , Reparo do DNA , Replicação do DNA , Genes Duplicados/genética , Genes Duplicados/fisiologia , Proteínas de Grupo de Alta Mobilidade/genética , Histonas/metabolismo , Nucleossomos , Fatores de Transcrição/metabolismo
11.
Dev Cell ; 41(4): 392-407.e6, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28535374

RESUMO

Mesodermal cells signal to neighboring epithelial cells to modulate their proliferation in both normal and disease states. We adapted a Caenorhabditis elegans organogenesis model to enable a genome-wide mesodermal-specific RNAi screen and discovered 39 factors in mesodermal cells that suppress the proliferation of adjacent Ras pathway-sensitized epithelial cells. These candidates encode components of protein complexes and signaling pathways that converge on the control of chromatin dynamics, cytoplasmic polyadenylation, and translation. Stromal fibroblast-specific deletion of mouse orthologs of several candidates resulted in the hyper-proliferation of mammary gland epithelium. Furthermore, a 33-gene signature of human orthologs was selectively enriched in the tumor stroma of breast cancer patients, and depletion of these factors from normal human breast fibroblasts increased proliferation of co-cultured breast cancer cells. This cross-species approach identified unanticipated regulatory networks in mesodermal cells with growth-suppressive function, exposing the conserved and selective nature of mesodermal-epithelial communication in development and cancer.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/metabolismo , Redes Reguladoras de Genes , Proteínas ras/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem da Célula , Proliferação de Células , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Perfilação da Expressão Gênica , Genoma , Humanos , Glândulas Mamárias Animais/citologia , Mesoderma/metabolismo , Camundongos , Mutação/genética , Proteínas Nucleares , Especificidade de Órgãos , Fenótipo , Proteínas Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Transdução de Sinais/genética , Células Estromais/citologia , Células Estromais/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo
12.
Dev Genes Evol ; 227(3): 213-218, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28220250

RESUMO

Normal vulval development in the nematode Caenorhabditis briggsae is identical to that in the related Caenorhabditis elegans. However, several experiments suggest that there are differences between the two species with respect to the contribution of EGF/Ras signaling. To investigate these differences genetically, we have characterized a C. briggsae mutant strain that phenocopies the effect observed when C. briggsae animals are treated with U0126, an inhibitor of the EGF pathway component MEK. We identify that the gene affected in the mutant strain is Cbr-sur-2, which encodes a MED23 mediator complex protein that acts downstream of EGF signaling in C. elegans and other organisms, such as mammals. When Cbr-sur-2 and Cel-sur-2 mutants are compared, we find that the production of additional vulval cells from P5.p and P7.p in C. elegans is dependent on proper development of P6.p, while C. briggsae does not have a similar requirement. Combined chemical and genetic interference with the EGF pathway completely eliminates vulval development in C. elegans but not in C. briggsae. Our results provide genetic evidence for the differing requirements for EGF signaling in the two species.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis/classificação , Fator de Crescimento Epidérmico/metabolismo , Feminino , Transdução de Sinais , Vulva/crescimento & desenvolvimento
13.
Integr Biol (Camb) ; 9(2): 156-166, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28098310

RESUMO

Cell signaling networks regulate a variety of developmental and physiological processes, and changes in their response to external stimuli are often implicated in disease initiation and progression. To elucidate how different responses can arise from conserved signaling networks, we have developed a mathematical model of the well-characterized Caenorhabditis vulval development network involving EGF, Wnt and Notch signaling that recapitulates biologically observed behaviors. We experimentally block a specific element of the EGF pathway (MEK), and find different behaviors in vulval development in two Caenorhabditis species, C. elegans and C. briggsae. When we separate our parameters into subsets that correspond to these two responses, they yield model behaviors that are consistent with observed experimental results, despite the initial parameter grouping based on perturbation in a single node of the EGF pathway. Finally, our analysis predicts specific parameters that may be critical for the theoretically and experimentally observed differences, suggesting modifications that might allow intentional switching between the two species' responses. Our results indicate that all manipulations within a signal transduction pathway do not yield the same outcome, and provide a framework to identify the specific genetic perturbations within a conserved network that will confer unique behaviors on the network.


Assuntos
Sequência Conservada/genética , Regulação da Expressão Gênica/genética , Genes de Troca/genética , Modelos Genéticos , Transdução de Sinais/genética , Especificidade da Espécie , Simulação por Computador
14.
Genes Dev ; 29(16): 1707-20, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26302789

RESUMO

Inactivation of phosphatase and tensin homology deleted on chromosome 10 (PTEN) is linked to increased PI3K-AKT signaling, enhanced organismal growth, and cancer development. Here we generated and analyzed Pten knock-in mice harboring a C2 domain missense mutation at phenylalanine 341 (Pten(FV)), found in human cancer. Despite having reduced levels of PTEN protein, homozygous Pten(FV/FV) embryos have intact AKT signaling, develop normally, and are carried to term. Heterozygous Pten(FV/+) mice develop carcinoma in the thymus, stomach, adrenal medulla, and mammary gland but not in other organs typically sensitive to Pten deficiency, including the thyroid, prostate, and uterus. Progression to carcinoma in sensitive organs ensues in the absence of overt AKT activation. Carcinoma in the uterus, a cancer-resistant organ, requires a second clonal event associated with the spontaneous activation of AKT and downstream signaling. In summary, this PTEN noncatalytic missense mutation exposes a core tumor suppressor function distinct from inhibition of canonical AKT signaling that predisposes to organ-selective cancer development in vivo.


Assuntos
Carcinoma/genética , Mutação de Sentido Incorreto/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Animais , Carcinoma/enzimologia , Carcinoma/fisiopatologia , Núcleo Celular/metabolismo , Células Cultivadas , Embrião de Mamíferos , Ativação Enzimática , Feminino , Técnicas de Introdução de Genes , Camundongos , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Estabilidade Proteica
16.
Evol Dev ; 17(1): 34-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25627712

RESUMO

Studies of vulval development in the nematode C. elegans have identified many genes that are involved in cell division and differentiation processes. Some of these encode components of conserved signal transduction pathways mediated by EGF, Notch, and Wnt. To understand how developmental mechanisms change during evolution, we are doing a comparative analysis of vulva formation in C. briggsae, a species that is closely related to C. elegans. Here, we report 14 mutations in 7 Multivulva (Muv) genes in C. briggsae that inhibit inappropriate division of vulval precursors. We have developed a new efficient and cost-effective gene mapping method to localize Muv mutations to small genetic intervals on chromosomes, thus facilitating cloning and functional studies. We demonstrate the utility of our method by determining molecular identities of three of the Muv genes that include orthologs of Cel-lin-1 (ETS) and Cel-lin-31 (Winged-Helix) of the EGF-Ras pathway and Cel-pry-1 (Axin), of the Wnt pathway. The remaining four genes reside in regions that lack orthologs of known C. elegans Muv genes. Inhibitor studies demonstrate that the Muv phenotype of all four new genes is dependent on the activity of the EGF pathway kinase, MEK. One of these, Cbr-lin(gu167), shows modest increase in the expression of Cbr-lin-3/EGF compared to wild type. These results argue that while Cbr-lin(gu167) may act upstream of Cbr-lin-3/EGF, the other three genes influence the EGF pathway downstream or in parallel to Cbr-lin-3. Overall, our findings demonstrate that the genetic program underlying a conserved developmental process includes both conserved and divergent functional contributions.


Assuntos
Caenorhabditis/embriologia , Caenorhabditis/genética , Fator de Crescimento Epidérmico/metabolismo , Transdução de Sinais , Animais , Caenorhabditis/classificação , Caenorhabditis/metabolismo , Feminino , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Vulva/citologia , Vulva/embriologia , Vulva/metabolismo
17.
BMC Syst Biol ; 6: 77, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22734688

RESUMO

BACKGROUND: Complex gene regulatory networks underlie many cellular and developmental processes. While a variety of experimental approaches can be used to discover how genes interact, few biological systems have been systematically evaluated to the extent required for an experimental definition of the underlying network. Therefore, the development of computational methods that can use limited experimental data to define and model a gene regulatory network would provide a useful tool to evaluate many important but incompletely understood biological processes. Such methods can assist in extracting all relevant information from data that are available, identify unexpected regulatory relationships and prioritize future experiments. RESULTS: To facilitate the analysis of gene regulatory networks, we have developed a computational modeling pipeline method that complements traditional evaluation of experimental data. For a proof-of-concept example, we have focused on the gene regulatory network in the nematode C. elegans that mediates the developmental choice between mesodermal (muscle) and ectodermal (skin) cell fates in the embryonic C lineage. We have used gene expression data to build two models: a knowledge-driven model based on gene expression changes following gene perturbation experiments, and a data-driven mathematical model derived from time-course gene expression data recovered from wild-type animals. We show that both models can identify a rich set of network gene interactions. Importantly, the mathematical model built only from wild-type data can predict interactions demonstrated by the perturbation experiments better than chance, and better than an existing knowledge-driven model built from the same data set. The mathematical model also provides new biological insight, including a dissection of zygotic from maternal functions of a key transcriptional regulator, PAL-1, and identification of non-redundant activities of the T-box genes tbx-8 and tbx-9. CONCLUSIONS: This work provides a strong example for a mathematical modeling approach that solely uses wild-type data to predict an underlying gene regulatory network. The modeling approach complements traditional methods of data analysis, suggesting non-intuitive network relationships and guiding future experiments.


Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Biologia Computacional/métodos , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Modelos Genéticos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Proteínas de Homeodomínio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Fatores de Tempo , Transativadores/metabolismo
18.
Mech Dev ; 128(7-10): 428-41, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21884786

RESUMO

Sp factors are important for animal development and the transcriptional regulation of a wide variety of genes. How they influence the developmental decisions of individual cells within the organism, however, is poorly understood. To better understand the developmental functions for Sp transcription factors, we have characterized the functions of Caenorhabditis elegans SPTF-3 using RNAi knockdown and a non-null, hypomorphic mutant allele. We find that disruption of sptf-3 confers a variety of developmental defects, including defects in development of the egg-laying system, oocyte production, and embryonic morphogenesis. sptf-3 mutants exhibit defects in vulval lineage polarity, a phenotype previously only observed in mutants defective in Wnt signaling. We show that the embryonic function of sptf-3 is dependent on germline activity, arguing that the gene has an important maternal contribution to embryonic development. An evaluation of reporter gene expression suggests that SPTF-3 exhibits specificity, in that it can influence the expression of a given gene in some cells but not others, and that SPTF-3 participates in the maintenance of gene expression states in differentiated cells. We propose SPTF-3 provides a good model to study the in vivo functions for Sp transcription factors during animal development.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Fertilidade/genética , Fator de Transcrição Sp3/genética , Vulva/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular , Polaridade Celular/genética , Sobrevivência Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Dados de Sequência Molecular , Morfogênese , Mutação/genética , Interferência de RNA , Fator de Transcrição Sp3/metabolismo , Vulva/embriologia
19.
PLoS Genet ; 7(7): e1002174, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21779179

RESUMO

The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes.


Assuntos
Caenorhabditis/genética , Evolução Molecular , Endogamia , Recombinação Genética/genética , Animais , Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis elegans/genética , Mapeamento Cromossômico , Cromossomos/genética , Cruzamentos Genéticos , Bases de Dados Genéticas , Feminino , Rearranjo Gênico/genética , Variação Genética , Genoma/genética , Genótipo , Desequilíbrio de Ligação/genética , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Especificidade da Espécie , Sintenia/genética
20.
Nat Methods ; 7(9): 693-5, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20805797
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...