Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 260(Pt 1): 129384, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224812

RESUMO

CRISPR/Cas9-mediated multiplex genome editing (MGE) conventionally uses multiple single-guide RNAs (sgRNAs) for gene-targeted mutagenesis via the non-homologous end joining (NHEJ) pathway. MGE has been proven to be highly efficient for functional gene disruption/knockout (KO) at multiple loci in mammalian cells or organisms. However, in the absence of a DNA donor, this approach is limited to small indels without transgene integration. Here, we establish the linear double-stranded DNA (dsDNA) and double-cut plasmid (dcPlasmid) combination-assisted MGE in channel catfish (Ictalurus punctatus), allowing combinational deletion mutagenesis and transgene knock-in (KI) at multiple sites through NHEJ/homology-directed repair (HDR) pathway in parallel. In this study, we used single-sgRNA-based genome editing (ssGE) and multi-sgRNA-based MGE (msMGE) to replace the luteinizing hormone (lh) and melanocortin-4 receptor (mc4r) genes with the cathelicidin (As-Cath) transgene and the myostatin (two target sites: mstn1, mstn2) gene with the cecropin (Cec) transgene, respectively. A total of 9000 embryos were microinjected from three families, and 1004 live fingerlings were generated and analyzed. There was no significant difference in hatchability (all P > 0.05) and fry survival (all P > 0.05) between ssGE and msMGE. Compared to ssGE, CRISPR/Cas9-mediated msMGE assisted by the mixture of dsDNA and dcPlasmid donors yielded a higher knock-in (KI) efficiency of As-Cath (19.93 %, [59/296] vs. 12.96 %, [45/347]; P = 0.018) and Cec (22.97 %, [68/296] vs. 10.80 %, [39/361]; P = 0.003) transgenes, respectively. The msMGE strategy can be used to generate transgenic fish carrying two transgenes at multiple loci. In addition, double and quadruple mutant individuals can be produced with high efficiency (36.3 % âˆ¼ 71.1 %) in one-step microinjection. In conclusion, we demonstrated that the CRISPR/Cas9-mediated msMGE allows the one-step generation of simultaneous insertion of the As-Cath and Cec transgenes at four sites, and the simultaneous disruption of the lh, mc4r, mstn1 and mstn2 alleles. This msMGE system, aided by the mixture donors, promises to pioneer a new dimension in the drive and selection of multiple designated traits in other non-model organisms.


Assuntos
Peixes-Gato , RNA Guia de Sistemas CRISPR-Cas , Humanos , Animais , Sistemas CRISPR-Cas/genética , Peixes-Gato/genética , Edição de Genes/métodos , Transgenes/genética , Mamíferos/genética
2.
J Fish Biol ; 101(1): 236-248, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35591772

RESUMO

Coevolution with predators leads to the use of low-risk habitats by many prey species, which promotes survival during early developmental phases. These nurseries are valued by conservation and management agencies because of their contributions to adult populations. However, the physical and geographic characteristics, like shallow depths and isolation from other marine habitats, that restrict access to predators and thereby reduce risk to juvenile animals can also limit scientific research. Consequently, many nursery habitats are still unidentified and understudied. Here we used gillnet monitoring from 1982 to 2018 to delineate blacktip shark (Carcharhinus limbatus) nurseries in the north-western Gulf of Mexico and elucidated their physical, environmental and biological characteristics. Nursery habitats within estuaries (<2% of spatial area) were proximate to the Gulf of Mexico and exhibited significantly lower variability in salinity than non-nurseries. However, relative abundances of predators and prey were not significant delineators of nursery habitats. As such, food and risk may not influence juvenile blacktip habitat use as expected. Alternatively, reduced osmoregulatory stress attributed to predictable environments likely provides advantageous conditions for blacktips to develop foraging and antipredator tactics, which is vital prior to the winter migration of juvenile sharks into the Gulf of Mexico.


Assuntos
Tubarões , Animais , Ecossistema , Estuários , Golfo do México , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA