Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Geophys ; 58(3): e2019RG000672, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32879921

RESUMO

Global sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea-level observing system, the knowledge of regional sea-level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time. Despite the advances, gaps in the understanding of contemporary sea-level change remain and inhibit the ability to predict how the relevant processes may lead to future change. These gaps arise in part due to the complexity of the linkages between the drivers of sea-level change. Here we review the individual processes which lead to sea-level change and then describe how they combine and vary regionally. The intent of the paper is to provide an overview of the current state of understanding of the processes that cause regional sea-level change and to identify and discuss limitations and uncertainty in our understanding of these processes. Areas where the lack of understanding or gaps in knowledge inhibit the ability to provide the needed information for comprehensive planning efforts are of particular focus. Finally, a goal of this paper is to highlight the role of the expanded sea-level observation network-particularly as related to satellite observations-in the improved scientific understanding of the contributors to regional sea-level change.

2.
Sci Data ; 6(1): 326, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852894

RESUMO

We develop an aggregated extreme sea level (ESL) indicator for the contiguous United States coastline, which is comprised of separate indicators for mean sea level (MSL) and storm surge climatology (SSC). We use water level data from tide gauges to estimate interannual to multi-decadal variability of MSL and SSC and identify coastline stretches where the observed changes are coherent. Both the MSL and SSC indicators show significant fluctuations. Indicators of the individual components are combined with multi-year tidal contributions into aggregated ESL indicators. The relative contribution of the different components varies considerably in time and space. Our results highlight the important role of interannual to multi-decadal variability in different sea level components in exacerbating, or reducing, the impacts of long-term MSL rise over time scales relevant for coastal planning and management. Regularly updating the proposed indicator will allow tracking changes in ESL posing a threat to many coastal communities, including the identification of periods where the likelihood of flooding is particularly large or small.

3.
Nat Clim Chang ; 5(5): 358-369, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31534490

RESUMO

Time-resolved satellite gravimetry has revolutionized understanding of mass transport in the Earth system. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) has enabled monitoring of the terrestrial water cycle, ice sheet and glacier mass balance, sea level change and ocean bottom pressure variations and understanding responses to changes in the global climate system. Initially a pioneering experiment of geodesy, the time-variable observations have matured into reliable mass transport products, allowing assessment and forecast of a number of important climate trends and improve service applications such as the U.S. Drought Monitor. With the successful launch of the GRACE Follow-On mission, a multi decadal record of mass variability in the Earth system is within reach.

4.
Geosci Model Dev ; 10(1): 255-270, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29697704

RESUMO

We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.

5.
Proc Natl Acad Sci U S A ; 107(42): 17916-21, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20921364

RESUMO

Freshwater discharge from the continents is a key component of Earth's water cycle that sustains human life and ecosystem health. Surprisingly, owing to a number of socioeconomic and political obstacles, a comprehensive global river discharge observing system does not yet exist. Here we use 13 years (1994-2006) of satellite precipitation, evaporation, and sea level data in an ocean mass balance to estimate freshwater discharge into the global ocean. Results indicate that global freshwater discharge averaged 36,055 km(3)/y for the study period while exhibiting significant interannual variability driven primarily by El Niño Southern Oscillation cycles. The method described here can ultimately be used to estimate long-term global discharge trends as the records of sea level rise and ocean temperature lengthen. For the relatively short 13-year period studied here, global discharge increased by 540 km(3)/y(2), which was largely attributed to an increase of global-ocean evaporation (768 km(3)/y(2)). Sustained growth of these flux rates into long-term trends would provide evidence for increasing intensity of the hydrologic cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...