Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 448: 139148, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569409

RESUMO

Wheat proteins can trigger immunogenic reactions due to their resistance to digestion and immunostimulatory epitopes. Here, we investigated the peptidomic map of partially digested bread samples and the fingerprint of epitope diversity from 16 wheat genotypes grown in two environmental conditions. Flour protein content and composition were characterized; gastric and jejunal peptides were quantified using LC-MS/MS, and genotypes were classified into high or low bread protein digestibility. Differences in flour protein content and peptide composition distinguish high from low digestibility genotypes in both growing environments. No common peptide signature was found between high- and low-digestible genotypes; however, the celiac or allergen epitopes were noted not to be higher in low-digestible genotypes. Overall, this study established a peptidomic and epitope diversity map of digested wheat bread and provided new insights and correlations between weather conditions, genotypes, digestibility and wheat sensitivities such as celiac disease and wheat allergy.

2.
Food Res Int ; 169: 112887, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254335

RESUMO

Mass spectrometry has become the technique of choice for the assessment of a high variety of molecules in complex food matrices. It is best suited for monitoring the evolution of digestive processes in vivo and in vitro. However, considering the variety of equipment available in different laboratories and the diversity of sample preparation methods, instrumental settings for data acquisition, statistical evaluations, and interpretations of results, it is difficult to predict a priori the ideal parameters for optimal results. The present work addressed this uncertainty by executing an inter-laboratory study with samples collected during in vitro digestion and presenting an overview of the state-of-the-art mass spectrometry applications and analytical capabilities available for studying food digestion. Three representative high-protein foods - skim milk powder (SMP), cooked chicken breast and tofu - were digested according to the static INFOGEST protocol with sample collection at five different time points during gastric and intestinal digestion. Ten laboratories analysed all digesta with their in-house equipment and applying theirconventional workflow. The compiled results demonstrate in general, that soy proteins had a slower gastric digestion and the presence of longer peptide sequences in the intestinal phase compared to SMP or chicken proteins, suggesting a higher resistance to the digestion of soy proteins. Differences in results among the various laboratories were attributed more to the peptide selection criteria than to the individual analytical platforms. Overall, the combination of mass spectrometry techniques with suitable methodological and statistical approaches is adequate for contributing to the characterisation of the recently defined digestome.


Assuntos
Digestão , Proteínas de Soja , Animais , Proteínas de Soja/metabolismo , Leite/química , Peptídeos/análise , Espectrometria de Massas
3.
Data Brief ; 43: 108492, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35928346

RESUMO

The protein degradation of alfalfa hay after tannin supplementation was monitored during wethers digestion. Three rumen-cannulated wethers were infused a tannin solution, and water for control, through the cannula. The digestion time-points samples were collected in vivo in the rumen and in vitro in the abomasum, and the small intestine compartments. The digestomic dataset was acquired by identifying and quantifying the peptides resulting from the protein degradation, using high-resolution LC-MS/MS mass spectrometry and label-free quantitation. The digestomic dataset is the compilation of proteomic data acquired in the rumen and peptidomic data acquired in the abomasum and in the small intestine. The proteomic analysis identified 20 Medicago proteins in the rumen fluid, based on 169 peptides of which 140 are unique. The peptidomic analysis identified 28 Medicago proteins in the abomasum, based on 575 peptides of which 363 are unique, and 11 Medicago proteins in the small intestine, based on 94 peptides of which 63 are unique. This digestomic dataset of proteolysis during sheep post rumen digestion after tannin supplementation reveals the protein regions protected by tannin supplementation, and could be reused in studies related to the protein use efficiency by ruminants.

4.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563153

RESUMO

Aging is associated with a progressive loss of skeletal muscle mass and function termed sarcopenia. Various metabolic alterations that occur with aging also increase the risk of undernutrition, which can worsen age-related sarcopenia. However, the impact of undernutrition on aged skeletal muscle remains largely under-researched. To build a deeper understanding of the cellular and molecular mechanisms underlying age-related sarcopenia, we characterized the undernutrition-induced changes in the skeletal muscle proteome in old rats. For this study, 20-month-old male rats were fed 50% or 100% of their spontaneous intake for 12 weeks, and proteomic analysis was performed on both slow- and fast-twitch muscles. Proteomic profiling of undernourished aged skeletal muscle revealed that undernutrition has profound effects on muscle proteome independently of its effect on muscle mass. Undernutrition-induced changes in muscle proteome appear to be muscle-type-specific: slow-twitch muscle showed a broad pattern of differential expression in proteins important for energy metabolism, whereas fast-twitch muscle mainly showed changes in protein turnover between undernourished and control rats. This first proteomic analysis of undernourished aged skeletal muscle provides new molecular-level insight to explain phenotypic changes in undernourished aged muscle. We anticipate this work as a starting point to define new biomarkers associated with undernutrition-induced muscle loss in the elderly.


Assuntos
Desnutrição , Sarcopenia , Envelhecimento/metabolismo , Animais , Masculino , Desnutrição/metabolismo , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Proteômica , Ratos , Sarcopenia/metabolismo
5.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35409073

RESUMO

Middle-aged and master endurance athletes exhibit similar physical performance and long-term muscle adaptation to aerobic exercise. Nevertheless, we hypothesized that the short-term plasticity of the skeletal muscle might be distinctly altered for master athletes when they are challenged by a single bout of prolonged moderate-intensity exercise. Six middle-aged (37Y) and five older (50Y) master highly-trained athletes performed a 24-h treadmill run (24TR). Vastus lateralis muscle biopsies were collected before and after the run and assessed for proteomics, fiber morphometry, intramyocellular lipid droplets (LD), mitochondrial oxidative activity, extracellular matrix (ECM), and micro-vascularisation. Before 24TR, muscle fiber type morphometry, intramyocellular LD, oxidative activity, ECM and micro-vascularisation were similar between master and middle-aged runners. For 37Y runners, 24TR was associated with ECM thickening, increased capillary-to-fiber interface, and an 89% depletion of LD in type-I fibers. In contrast, for 50Y runners, 24TR did not alter ECM and capillarization and poorly depleted LDs. Moreover, an impaired succinate dehydrogenase activity and functional class scoring of proteomes suggested reduced oxidative phosphorylation post-24TR exclusively in 50Y muscle. Collectively, our data support that middle-aged and master endurance athletes exhibit distinct transient plasticity in response to a single bout of ultra-endurance exercise, which may constitute early signs of muscle aging for master athletes.


Assuntos
Atletas , Resistência Física , Envelhecimento/fisiologia , Exercício Físico/fisiologia , Humanos , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Resistência Física/fisiologia
6.
J Agric Food Chem ; 70(7): 2221-2230, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35157803

RESUMO

The aim of this study was to characterize the effects of tannins on plant protein during sheep digestion using a digestomic approach combining in vivo (rumen) conditions and an in vitro digestive system (abomasum and small intestine). Ruminal fluid from wethers infused with a tannin solution or water (control) was introduced into the digester, and protein degradation was followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Tannin infusion in the rumen led to a clear decrease in protein degradation-related fermentation end-products, whereas ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) protein was more abundant than in control wethers. In the simulated abomasum, peptidomic analysis showed more degradation products of RuBisCo in the presence of tannins. The effect of RuBisCo protection by tannins continued to impact Rubisco digestion into early-stage intestinal digestion but was no longer detectable in late-stage intestinal digestion. The peptidomics approach proved a potent tool for identifying and quantifying the type of protein hydrolyzed throughout the gastrointestinal tract.


Assuntos
Medicago sativa , Taninos , Ração Animal/análise , Animais , Cromatografia Líquida , Suplementos Nutricionais/análise , Digestão , Fermentação , Medicago sativa/metabolismo , Proteólise , Rúmen/metabolismo , Ovinos , Espectrometria de Massas em Tandem , Taninos/metabolismo
7.
J Crohns Colitis ; 16(7): 1140-1150, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35022663

RESUMO

BACKGROUND AND AIMS: The mechanism of action of anti-tumour necrosis factor [anti-TNF] agents could implicate macrophage modulation in Crohn's disease [CD]. As CD macrophages are defective in controlling CD-associated adherent-invasive Escherichia coli [AIEC], anti-TNF agents could limit AIEC replication within macrophages. We assessed the effect of anti-TNF agents on AIEC survival within monocyte-derived macrophages [MDMs] from CD patients and attempted to identify the proteins involved. METHODS: Peripheral blood MDMs were obtained from 44 CD patients [22 with and 22 without anti-TNF agents]. MDMs were infected with reference strain AIEC-LF82. Proteomic analysis was performed before and 6 h after AIEC-LF82 infection. RESULTS: AIEC-LF82 survival was lower in MDMs from CD patients receiving anti-TNF agents compared to those who did not [-73%, p = 0.006]. After AIEC-LF82 infection, the levels of CD82 [p = 0.007], ILF3 [Interleukin enhancer-binding factor 3; p = 0.001], FLOT-1 [Flotillin-1; p = 0.007] and CHI3L1 [Chitinase 3-like 1; p = 0.035] proteins were different within CD-MDMs depending on anti-TNF exposure. FLOT-1 [ϱ = -0.44; p = 0.038] and CHI3L1 [ϱ = 0.57, p = 0.006] levels were inversely and positively correlated with AIEC survival within MDMs from CD patients with or without anti-TNF, respectively. We observed a dose-dependent decrease of AIEC-LF82 survival after adjunction of anti-TNF within MDMs, inducing an increase of FLOT-1 and decrease of CHI3L1 mRNA levels. Neutralization of intra-macrophagic CHI3L1 protein using anti-CHI3L1 antibodies reduced AIEC survival within macrophages 6 h after infection [p < 0.05]. CONCLUSION: Anti-TNF agents are able to restrict replication of pathobionts, such as AIEC, within macrophages by modulating FLOT-1 and CHI3L1 expression in CD patients.


Assuntos
Proteína 1 Semelhante à Quitinase-3 , Doença de Crohn , Infecções por Escherichia coli , Inibidores do Fator de Necrose Tumoral , Aderência Bacteriana , Proteína 1 Semelhante à Quitinase-3/genética , Doença de Crohn/tratamento farmacológico , Doença de Crohn/microbiologia , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Mucosa Intestinal/metabolismo , Macrófagos/microbiologia , Proteínas de Membrana/genética , Proteômica , Inibidores do Fator de Necrose Tumoral/uso terapêutico
8.
J Proteomics ; 250: 104388, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34601155

RESUMO

Listeria monocytogenes presents a dimorphism associated to the SecA2 activity with cells having a normal rod shape or a dysmorphic elongated filamentous form. Besides variation of the cell and colony morphotype, this cell differentiation has profound ecophysiological and physiopathological implications with collateral effects on virulence and pathogenicity, biotope colonisation, bacterial adhesion and biofilm formation. This suggests the SecA2-only protein export could influence the listerial cell surface, which was investigated first by characterising its properties in L. monocytogenes wt and ΔsecA2. The degree of hydrophilicity and Lewis acid-base properties appeared significantly affected upon SecA2 inactivation. As modification of electrostatic properties would owe to modification in the composition of cell-surface proteins, the proteosurfaceome was further investigated by shotgun label-free proteomic analysis with a comparative relative quantitative approach. Following secretomic analysis, the protein secretion routes of the identified proteins were mapped considering the cognate transport and post-translocational maturation systems, as well as protein categories and subcellular localisation. Differential protein abundance profiles coupled to network analysis revealed the SecA2 dependence of 48 proteins, including some related to cell envelope biogenesis, translation and protein export, which could account for modifications of adhesion and surface properties of L. monocytogenes upon SecA2 inactivation. This investigation unravelled the profound influence of SecA2 activity on the cell surface properties and proteosurfaceome of L. monocytogenes, which provides advanced insights about its ecophysiopathology. SIGNIFICANCE: L. monocytogenes is a foodborne zoonotic pathogen and etiological agent of human listeriosis. This species presents a cellular dimorphism associated to the SecA2 activity that has profound physiopathological and ecophysiological implications with collateral effects on bacterial virulence and colonisation. To explore the influence of the SecA2-only protein export on the listerial cell, the surface properties of L. monocytogenes expressing or depleted of SecA2 was characterised by microelectrophoresis, microbial affinity to solvents and contact angles analyses. As modifications of hydrophilicity and Lewis acid-base electrostatic properties would owe to modification in the composition of cell-surface proteins, the proteinaceous subset of the surfaceome, i.e. the proteosurfaceome, was investigated further by shotgun label-free proteomic analysis. This subproteome appeared quite impacted upon SecA2 inactivation with the identification of proteins accounting for modifications in the cell surface properties. The profound influence of SecA2 activity on the cell surface of L. monocytogenes was unravelled, which provides advanced insights about its ecophysiopathology.


Assuntos
Listeria monocytogenes , Adenosina Trifosfatases , Proteínas de Bactérias/metabolismo , Humanos , Listeria monocytogenes/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Proteômica
9.
Molecules ; 26(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207540

RESUMO

The marketing of poultry livers is only authorized as fresh, frozen, or deep-frozen. The higher consumer demand for these products for a short period of time may lead to the marketing of frozen-thawed poultry livers: this constitutes fraud. The aim of this study was to design a method for distinguishing frozen-thawed livers from fresh livers. For this, the spectral fingerprint of liver proteins was acquired using Matrix-Assisted Laser Dissociation Ionization-Time-Of-Flight mass spectrometry. The spectra were analyzed using the chemometrics approach. First, principal component analysis studied the expected variability of commercial conditions before and after freezing-thawing. Then, the discriminant power of spectral fingerprint of liver proteins was assessed using supervised model generation. The combined approach of mass spectrometry and chemometrics successfully described the evolution of protein profile during storage time, before and after freezing-thawing, and successfully discriminated the fresh and frozen-thawed livers. These results are promising in terms of fraud detection, providing an opportunity for implementation of a reference method for agencies to fight fraud.


Assuntos
Fígado Gorduroso/metabolismo , Produtos Avícolas/análise , Proteoma/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Patos , Fígado Gorduroso/classificação , Congelamento , Análise de Componente Principal , Proteoma/análise , Controle de Qualidade
10.
Foods ; 10(5)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063224

RESUMO

Food processing affects the structure and chemical state of proteins. In particular, protein oxidation occurs and may impair protein properties. These chemical reactions initiated during processing can develop during digestion. Indeed, the physicochemical conditions of the stomach (oxygen pressure, low pH) favor oxidation. In that respect, digestive proteases may be affected as well. Yet, very little is known about the link between endogenous oxidation of digestive enzymes, their potential denaturation, and, therefore, food protein digestibility. Thus, the objective of this study is to understand how oxidative chemical processes will impact the pepsin secondary structure and its hydrolytic activity. The folding and unfolding kinetics of pepsin under oxidative conditions was determined using Synchrotron Radiation Circular Dichroism. SRCD gave us the possibility to monitor the rapid kinetics of protein folding and unfolding in real-time, giving highly resolved spectral data. The proteolytic activity of control and oxidized pepsin was investigated by MALDI-TOF mass spectrometry on a meat protein model, the creatine kinase. MALDI-TOF MS allowed a rapid evaluation of the proteolytic activity through peptide fingerprint. This study opens up new perspectives by shifting the digestion paradigm taking into account the gastric digestive enzyme and its substrate.

11.
Eur J Nutr ; 60(8): 4331-4344, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34041584

RESUMO

PURPOSE: Objective markers of usual diet are of interest as alternative or validating tools in nutritional epidemiology research. The main purpose of the work was to assess whether saliva protein composition can reflect dietary habits in older adults, and how type 2 diabetes impacted on the saliva-diet correlates. METHODS: 214 participants were selected from 2 European cohorts of community-dwelling older adults (3C-Bordeaux and Seniors-ENRICA-2), using a case-control design nested in each cohort. Cases were individuals with type 2 diabetes. Dietary information was obtained using the Mediterranean Diet Adherence Screener (MEDAS). Saliva was successfully obtained from 211 subjects, and its proteome analyzed by liquid chromatography-tandem mass spectrometry. RESULTS: The relative abundance of 246 saliva proteins was obtained across all participants. The salivary proteome differed depending on the intake level of some food groups (especially vegetables, fruits, sweet snacks and red meat), in a diabetic status- and cohort-specific manner. Gene Set Enrichment Analysis suggested that some biological processes were consistently affected by diet across cohorts, for example enhanced platelet degranulation in high consumers of sweet snacks. Minimal models were then fitted to predict dietary variables by sociodemographic, clinical and salivary proteome variables. For the food group «sweet snacks¼, selected salivary proteins contributed to the predictive model and improved its performance in the Seniors-ENRICA-2 cohort and when both cohorts were combined. CONCLUSION: Saliva proteome composition of elderly individuals can reflect some aspects of dietary patterns.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta Mediterrânea , Idoso , Diabetes Mellitus Tipo 2/epidemiologia , Comportamento Alimentar , Humanos , Proteoma , Saliva
12.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921590

RESUMO

(1) Background: Aging is associated with a progressive decline in muscle mass and function. Aging is also a primary risk factor for metabolic syndrome, which further alters muscle metabolism. However, the molecular mechanisms involved remain to be clarified. Herein we performed omic profiling to decipher in muscle which dominating processes are associated with healthy aging and metabolic syndrome in old men. (2) Methods: This study included 15 healthy young, 15 healthy old, and 9 old men with metabolic syndrome. Old men were selected from a well-characterized cohort, and each vastus lateralis biopsy was used to combine global transcriptomic and proteomic analyses. (3) Results: Over-representation analysis of differentially expressed genes (ORA) and functional class scoring of pathways (FCS) indicated that healthy aging was mainly associated with upregulations of apoptosis and immune function and downregulations of glycolysis and protein catabolism. ORA and FCS indicated that with metabolic syndrome the dominating biological processes were upregulation of proteolysis and downregulation of oxidative phosphorylation. Proteomic profiling matched 586 muscle proteins between individuals. The proteome of healthy aging revealed modifications consistent with a fast-to-slow transition and downregulation of glycolysis. These transitions were reduced with metabolic syndrome, which was more associated with alterations in NADH/NAD+ shuttle and ß-oxidation. Proteomic profiling further showed that all old muscles overexpressed protein chaperones to preserve proteostasis and myofiber integrity. There was also evidence of aging-related increases in reactive oxygen species but better detoxifications of cytotoxic aldehydes and membrane protection in healthy than in metabolic syndrome muscles. (4) Conclusions: Most candidate proteins and mRNAs identified herein constitute putative muscle biomarkers of healthy aging and metabolic syndrome in old men.


Assuntos
Síndrome Metabólica/metabolismo , Proteômica/métodos , Animais , Glicólise/genética , Glicólise/fisiologia , Humanos , Síndrome Metabólica/genética , Músculo Esquelético/metabolismo , Sarcopenia/genética , Sarcopenia/metabolismo , Transcriptoma/genética
13.
J Proteomics ; 232: 104025, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33160105

RESUMO

Among diarrheagenic E. coli (DEC), enterohaemorrhagic E. coli (EHEC) are the most virulent anthropozoonotic agents. The ability of bacterial cells to functionally interact with their surrounding essentially relies on the secretion of different protein effectors. To experimentally determine the repertoire of extracytoproteins in E. coli O157:H7, a subproteomic analysis was performed not only considering the extracellular milieu but the cell surface and outer membrane vesicles. Following a secretome-based approach, the proteins trafficking from the interior to the exterior of the cell were depicted considering cognate protein transport systems and subcellular localisation. Label-free quantitative analysis of the proteosurfaceome, proteovesiculome and exoproteome from E. coli O157:H7 grown in three different nutrient media revealed differential protein expression profiles and allowed defining the core and variant subproteomes. Network analysis further revealed the higher abundance of some protein clusters in chemically defined medium over rich complex medium, especially related to some outer membrane proteins, ABC transport and Type III secretion systems. This first comprehensive study of the EHEC secretome unravels the profound influence of environmental conditions on the extracytoplasmic proteome, provides new insight in the physiology of E. coli O157:H7 and identifies potentially important molecular targets for the development of preventive strategies against EHEC/STEC. SIGNIFICANCE: Escherichia coli O157:H7 is responsible for severe diarrhoea especially in young children. Despite years of investigations, the global view of the extracytoplasmic proteins expressed in this microorganism was eluded. To provide the first comprehensive view of the secretome landscape of E. coli O157:H7, the exoproteome, proteosurfaceome and proteovesiculome were profiled using growth conditions most likely to induce changes in bacterial protein secretion. The profound influence of growth conditions on the extracytoplasmic proteome was unravelled and allowed identifying the core and variant subproteomes. Besides new insight in the physiology of enterohaemorrhagic E. coli, these proteins potentially constitute important molecular targets for the development of preventive strategies.


Assuntos
Escherichia coli O157 , Proteínas de Escherichia coli , Proteoma
14.
Int J Mol Sci ; 21(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575512

RESUMO

Crosstalk between adipose and muscular tissues is hypothesized to regulate the number of muscular and adipose cells during fetal growth, with post-natal consequences on lean and fat masses. Such crosstalk largely remains, however, to be described. We hypothesized that a characterization of the proteomes of adipose and muscular tissues from bovine fetuses may enhance the understanding of the crosstalk between these tissues through the prediction of their secretomes and surfaceomes. Proteomic experiments have identified 751 and 514 proteins in fetal adipose tissue and muscle. These are mainly involved in the regulation of cell proliferation or differentiation, but also in pathways such as apoptosis, Wnt signalling, or cytokine-mediated signalling. Of the identified proteins, 51 adipokines, 11 myokines, and 37 adipomyokines were predicted, together with 26 adipose and 13 muscular cell surface proteins. Analysis of protein-protein interactions suggested 13 links between secreted and cell surface proteins that may contribute to the adipose-muscular crosstalk. Of these, an interaction between the adipokine plasminogen and the muscular cell surface alpha-enolase may regulate the fetal myogenesis. The in silico secretome and surfaceome analyzed herein exemplify a powerful strategy to enhance the elucidation of the crosstalk between cell types or tissues.


Assuntos
Tecido Adiposo/embriologia , Músculos/embriologia , Mapas de Interação de Proteínas , Proteômica/métodos , Tecido Adiposo/metabolismo , Animais , Bovinos , Mineração de Dados , Bases de Dados de Proteínas , Feminino , Músculos/metabolismo , Gravidez
15.
Biology (Basel) ; 9(5)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349310

RESUMO

Vancomycin-resistant enterococci (VRE), due to their intrinsic resistance to various commonly used antibiotics and their malleable genome, make the treatment of infections caused by these bacteria less effective. The aims of this work were to characterize isolates of Enterococcus spp. that originated from processed meat, through phenotypic and genotypic techniques, as well as to detect putative antibiotic resistance biomarkers. The 19 VRE identified had high resistance to teicoplanin (89%), tetracycline (94%), and erythromycin (84%) and a low resistance to kanamycin (11%), gentamicin (11%), and streptomycin (5%). Based on a Next-Generation Sequencing NGS technique, most isolates were vanA-positive. The most prevalent resistance genes detected were erm(B) and aac(6')-Ii, conferring resistance to the classes of macrolides and aminoglycosides, respectively. MALDI-TOF mass spectrometry (MS) analysis detected an exclusive peak of the Enterococcus genus at m/z (mass-to-charge-ratio) 4428 ± 3, and a peak at m/z 6048 ± 1 allowed us to distinguish Enterococcus faecium from the other species. Several statistically significant protein masses associated with resistance were detected, such as peaks at m/z 6358.27 and m/z 13237.3 in ciprofloxacin resistance isolates. These results reinforce the relevance of the combined and complementary NGS and MALDI-TOF MS techniques for bacterial characterization.

16.
Food Res Int ; 132: 109123, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32331690

RESUMO

Food-derived bioactive peptides have generated an increasing interest in the field of health and well-being research. They can act either against the metabolic syndrome, participate in regulating the oxidation balance or act on the immune system. The aim of this study is to develop a workflow to generate bioactive peptides from three porcine offals namely, heart, liver, and lung and one muscle the Longissimus Dorsi, by combining in silico and in vitro approaches. Bioinformatics tools (e.i. BIOPEP and Uniprot) permitted to orientate the choice of enzymes for generating abundant bioactive peptides from the four studied porcine products. With papain and subtilisin, the main bioactivities potentially released were ACE inhibitors, DPP4 inhibitors and antioxidant peptides. An in vitro validation study using papain and subtilisin demonstrated high DPP4 inhibitors and antioxidant bioactivities for the generation of peptides. This work allowed: i) the identification of all proteins that composed porcine heart, liver, lung and LD muscle that could be useful for the scientific community, ii) the development of a workflow to select most abundant proteins in a product while considering abundance factors and iii) the potential of porcine meat and offals to generate DPP4 inhibitors and antioxidant peptides. However, there is still a need in developing new tools in order to face limitations of mass spectrometry for the identification of peptides with less than six amino acids. Such a work may contribute to the development of the circular economy and the innovative creation of value-added products from animal production.


Assuntos
Peptídeos/análise , Carne de Porco/análise , Hidrolisados de Proteína/química , Inibidores da Enzima Conversora de Angiotensina , Animais , Antioxidantes/química , Simulação por Computador , Inibidores da Dipeptidil Peptidase IV/farmacologia , Feminino , Masculino , Espectrometria de Massas , Oxigênio , Papaína , Subtilisinas , Suínos , Fluxo de Trabalho , Zinco
17.
Biology (Basel) ; 9(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204308

RESUMO

The commensal bacteria Escherichia coli causes several intestinal and extra-intestinal diseases, since it has virulence factors that interfere in important cellular processes. These bacteria also have a great capacity to spread the resistance genes, sometimes to phylogenetically distant bacteria, which poses an additional threat to public health worldwide. Here, we aimed to use the analytical potential of MALDI-TOF mass spectrometry (MS) to characterize E. coli isolates and identify proteins associated closely with antibiotic resistance. Thirty strains of extended-spectrum beta-lactamase producing E. coli were sampled from various animals. The phenotypes of antibiotic resistance were determined according to Clinical and Laboratory Standards Institute (CLSI) methods, and they showed that all bacterial isolates were multi-resistant to trimethoprim-sulfamethoxazole, tetracycline, and ampicillin. To identify peptides characteristic of resistance to particular antibiotics, each strain was grown in the presence or absence of the different antibiotics, and then proteins were extracted from the cells. The protein fingerprints of the samples were determined by MALDI-TOF MS in linear mode over a mass range of 2 to 20 kDa. The spectra obtained were compared by using the ClinProTools bioinformatics software, using three machine learning classification algorithms. A putative species biomarker was also detected at a peak m/z of 4528.00.

18.
Front Nutr ; 6: 89, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31259174

RESUMO

Listeria monocytogenes is a foodborne pathogen that can cause invasive severe human illness (listeriosis) in susceptible patients. Most human listeriosis cases appear to be caused by consumption of refrigerated ready-to-eat foods. Although initial contamination levels in foods are usually low, the ability of these bacteria to survive and multiply at low temperatures allows it to reach levels high enough to cause disease. This study explores the set of proteins that might have an association with L. monocytogenes adaptation to different temperatures. Cultures were grown in biofilm, the most widespread mode of growth in natural and industrial realms. Protein extractions were performed from three different growth temperatures (10, 25, and 37°C) and two growth phases (early stage and mature biofilm). L. monocytogenes subproteomes were targeted using three extraction methods: trypsin-enzymatic shaving, biotin-labeling and cell fractionation. The different subproteomes obtained were separated and analyzed by shotgun proteomics using high-performance liquid chromatography combined with tandem mass spectrometry (LC-OrbiTrap LTQVelos, ThermoFisher Scientific). A total of 141 (biotinylation), 98 (shaving) and 910 (fractionation) proteins were identified. Throughout the 920 unique proteins identified, many are connected to basic cell functions, but some are linked with thermoregulation. We observed some noteworthy protein abundance shifts associated with the major adaptation to cold mechanisms present in L. monocytogenes, namely: the role of ribosomes and the stressosome with a higher abundance of the general stress protein Ctc (Rl25) and the general stress transcription factor sigma B (σB), changes in cell fluidity and motility seen by higher levels of foldase protein PrsA2 and flagellin (FlaA), the uptake of osmolytes with a higher abundance of glycine betaine (GbuB) and carnitine transporters (OpucA), and the relevance of the overexpression of chaperone proteins such as cold shock proteins (CspLA and Dps). As for 37°C, we observed a significantly higher percentage of proteins associated with transcriptional or translational activity present in higher abundance upon comparison with the colder settings. These contrasts of protein expression throughout several conditions will enrich databases and help to model the regulatory circuitry that drives adaptation of L. monocytogenes to environments.

19.
Meat Sci ; 156: 146-155, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31158601

RESUMO

Adipose tissue (AT) deposits, either intramuscular (i.e., marbling) or at the carcass level, are major economic drivers in the beef industry. To identify biomarkers and unravel mechanisms of AT deposition, we combined gel-based and gel-free methods and we mined the differential proteome of the longissimus thoracis from cows differing by two levels of both carcass and muscular adiposities (CMA). We identified 47 proteins with abundances that varied according to CMA. We listed 26 new candidate biomarkers of marbling and confirmed 21 proteins already proposed in the literature. Seven proteins involved in glycolysis or gluconeogenesis were the least abundant, while 14 proteins related to oxidative metabolism, slow-type muscle or retinoic acid metabolism were the most abundant in the high adiposity group. We highlighted eight proteins as differentially abundant and correlated with both CMA, thereby providing the first list of putative biomarkers of carcass adiposity. These proteins would be targeted in future studies aiming to categorize adiposity in cattle.


Assuntos
Tecido Adiposo , Proteínas Musculares/química , Carne Vermelha/análise , Animais , Biomarcadores/análise , Bovinos , Músculo Esquelético/química , Proteômica/métodos
20.
Int J Mol Sci ; 20(5)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845783

RESUMO

: The objective is to study the effects of nutrient restrictions, which induce a metabolic imbalance on the inflammatory response of the mammary gland in early lactation cows. The aim is to decipher the molecular mechanisms involved, by comparing a control, with a restriction group, a transcriptome and proteome, after an intra-mammary lipopolysaccharide challenge. Multi-parous cows were either allowed ad libitum intake of a lactation diet (n = 8), or a ration containing low nutrient density (n = 8; 48% barley straw and dry matter basis) for four days starting at 24 ± 3 days in milk. Three days after the initiation of their treatments, one healthy rear mammary quarter of 12 lactating cows was challenged with 50 µg of lipopolysaccharide (LPS). Transcriptomic and proteomic analyses were performed on mammary biopsies obtained 24 h after the LPS challenge, using bovine 44K microarrays, and nano-LC-MS/MS, respectively. Restriction-induced deficits in energy, led to a marked negative energy balance (41 versus 97 ± 15% of Net Energy for Lactation (NEL) requirements) and metabolic imbalance. A microarray analyses identified 25 differentially expressed genes in response to restriction, suggesting that restriction had modified mammary metabolism, specifically ß-oxidation process. Proteomic analyses identified 53 differentially expressed proteins, which suggests that the modification of protein synthesis from mRNA splicing to folding. Under-nutrition influenced mammary gland expression of the genes involved in metabolism, thereby increasing ß-oxidation and altering protein synthesis, which may affect the response to inflammation.


Assuntos
Restrição Calórica/efeitos adversos , Perfilação da Expressão Gênica/métodos , Lipopolissacarídeos/efeitos adversos , Glândulas Mamárias Animais/metabolismo , Proteômica/métodos , Animais , Bovinos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Lactação , Glândulas Mamárias Animais/efeitos dos fármacos , Nutrigenômica , Necessidades Nutricionais , Análise de Sequência com Séries de Oligonucleotídeos/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...