Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 11: 1083399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993814

RESUMO

Poly (vinyl chloride) (PVC) is commonly used to manufacture biomedical devices and hospital components, but it does not present antimicrobial activity enough to prevent biofouling. With the emergence of new microorganisms and viruses, such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that was responsible for the global pandemic caused by Coronavirus Disease 2019 (COVID-19), it is evident the importance of the development of self-disinfectant PVC for hospital environments and medical clinics where infected people remain for a long time. In this contribution, PVC nanocomposites with silver nanoparticles (AgNPs) were prepared in the molten state. AgNPs are well-known as antimicrobial agents suitable for designing antimicrobial polymer nanocomposites. Adding 0.1 to 0.5 wt% AgNPs significantly reduced Young's modulus and ultimate tensile strength of PVC due to the emergence of microstructural defects in the PVC/AgNP nanocomposites, but the impact strength did not change significantly. Furthermore, nanocomposites have a higher yellowness index (YI) and lower optical bandgap values than PVC. The PVC/AgNP nanocomposites present virucidal activity against SARS-CoV-2 (B.1.1.28 strain) within 48 h when the AgNP content is at least 0.3 wt%, suitable for manufacturing furniture and hospital equipment with self-disinfectant capacity to avoid secondary routes of COVID-19 contagion.

2.
Pharmaceutics ; 13(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199551

RESUMO

Polymeric implants loaded with drugs can overcome the disadvantages of oral or injection drug administration and deliver the drug locally. Several methods can load drugs into polymers. Herein, soaking and supercritical CO2 (scCO2) impregnation methods were employed to load aspirin into poly(l-lactic acid) (PLLA) and linear low-density polyethylene (LLDPE). Higher drug loadings (DL) were achieved with scCO2 impregnation compared to soaking and in a shorter time (3.4 ± 0.8 vs. 1.3 ± 0.4% for PLLA; and 0.4 ± 0.5 vs. 0.6 ± 0.5% for LLDPE), due to the higher swelling capacity of CO2. The higher affinity of aspirin explained the higher DL in PLLA than in LLDPE. Residual solvent was detected in LLDPE prepared by soaking, but within the FDA concentration limits. The solvents used in both methods acted as plasticizers and increased PLLA crystallinity. PLLA impregnated with aspirin exhibited faster hydrolysis in vitro due to the catalytic effect of aspirin. Finally, PLLA impregnated by soaking showed a burst release because of aspirin crystals on the PLLA surface, and released 100% of aspirin within 60 days, whereas the PLLA prepared with scCO2 released 60% after 74 days by diffusion and PLLA erosion. Hence, the scCO2 impregnation method is adequate for higher aspirin loadings and prolonged drug release.

3.
Acta Biomater ; 74: 312-325, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29777958

RESUMO

Topical nitric oxide (NO) delivery has been shown to accelerate wound healing. However, delivering NO to wounds at appropriate rates and doses requires new biomaterial-based strategies. Here, we describe the development of supramolecular interpolymer complex hydrogels comprising PEO-PPO-PEO (F127) micelles embedded in a poly(acrylic acid) (PAA) matrix, with S-nitrosoglutathione (GSNO) molecules dissolved in the hydrophilic domain. We show that PAA:F127/GSNO hydrogels start releasing NO upon hydration at rates controlled by their rates of water absorption. SAXS measurements indicate that the supramolecular structure of the hydrogels retains long-range order domains of F127 micelles. The PAA/F1227 hydrogels displayed dense morphologies and reduced rates of hydration. The NO release rates remain constant over the first 200 min, are directly correlated with the hydration rates of the PAA:F127/GSNO hydrogels, and can be modulated in the range of 40 nmol/g h to 1.5 µmol/g h by changing the PAA:F127 mass ratio. Long-term NO-release profiles over 5 days are governed by the first-order exponential decay of GSNO, with half-lives in the range of 0.5-3.4 days. A preliminary in vivo study on full-thickness excisional wounds in mice showed that topical NO release from the PAA:F127/GSNO hydrogels is triggered by exudate absorption and leads to increased angiogenesis and collagen fiber organization, as well as TGF-ß, IGF-1, SDF-1, and IL-10 gene expressions in the cicatricial tissue. In summary, these results suggest that hydration-controlled NO release from topical PAA:F127/GSNO hydrogels is a potential strategy for enhancing wound healing. STATEMENT OF SIGNIFICANCE: The topical delivery of nitric oxide (NO) to wounds may provide significant beneficial results and represent a promising strategy to treat chronic wounds. However, wound dressings capable of releasing NO after application and allowing the modulation of NO release rates, demand new platforms. Here, we describe a novel strategy to overcome these challenges, based on the use of supramolecular poly(acrylic acid) (PAA):F127 hydrogels charged with the NO donor S-nitrosoglutathione (GSNO) from whereby the NO release can be triggered by exudate absorption and delivered to the wound at rates controlled by the PAA:F127 mass ratio. Preliminary in vivo results offer a proof of concept for this strategy by demonstrating increased angiogenesis; collagen fibers organization; and TGF-ß, IGF-1, SDF-1, and IL-10 gene expressions in the cicatricial tissue after topical treatment with a PAA:F127/GSNO hydrogel.


Assuntos
Resinas Acrílicas , Hidrogéis , Óxido Nítrico , Polietilenos , Polipropilenos , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões , Resinas Acrílicas/farmacocinética , Resinas Acrílicas/farmacologia , Animais , Citocinas/biossíntese , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacocinética , Hidrogéis/farmacologia , Camundongos , Micelas , Óxido Nítrico/química , Óxido Nítrico/farmacocinética , Óxido Nítrico/farmacologia , Polietilenos/química , Polietilenos/farmacocinética , Polietilenos/farmacologia , Polipropilenos/química , Polipropilenos/farmacocinética , Polipropilenos/farmacologia , S-Nitrosoglutationa/química , S-Nitrosoglutationa/farmacocinética , S-Nitrosoglutationa/farmacologia , Ferimentos e Lesões/tratamento farmacológico , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA