Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Biochem Behav ; 232: 173653, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37804867

RESUMO

Women rapidly progress from recreational cocaine use to dependence, consume greater quantities of cocaine, experience more positive subjective effects of cocaine and have higher incidences of relapse during abstinence. These effects have been replicated in animal models of cocaine addiction and indicate an enhanced sensitivity and therefore, vulnerability of females to cocaine addiction. Furthermore, it has been demonstrated that estradiol (E2) is a key mediator of the aforementioned effects of cocaine in women and female animals. However, studies identifying the influence of E2 on cocaine-associated reward and its underlying neurobiological mechanisms are lacking. Here, we further explored the influence of E2 on cocaine conditioned place preference in female rats. We show that E2 mediates cocaine-conditioned reward by potentiating cocaine-context associations. In addition, the E2-mediated increases in cocaine-induced CPP are associated with increased activation of ERK1/2 and mTOR proteins in the nucleus accumbens, dorsal striatum, and ventral tegmental area. To assess the involvement of ERK1/2 and mTOR in E2-mediated enhanced cocaine-CPP, we inhibited ERK1/2 and/or mTOR activity during cocaine-conditioning and before CPP-test. Inhibition of ERK1/2 during conditioning blocked cocaine-CPP in females, inhibition mTOR was without effect, and inhibiting ERK1/2 and mTOR before CPP-test blocked cocaine-CPP. In conclusion, we have established that E2 enhances cocaine-conditioned reward by potentiating cocaine-context associations formed during conditioning. Additionally, activation of ERK1/2 during cocaine-conditioning is necessary for the potentiation of cocaine-conditioned reward by E2. SIGNIFICANCE STATEMENT: Studies characterizing the molecular substrates underlying the effects of E2 during the formation of cocaine-context associations are virtually unknown. In this study, we established the influence of E2 during the formation of cocaine-CPP and characterized the role of ERK1/2 and mTOR activity on this effect within significant nodes of the reward pathway. The elucidation of the role of E2 in cocaine-induced intracellular signaling fills a significant gap in our knowledge regarding the mechanisms by which E2 affects intracellular signaling pathways to indicate the motivational salience of a stimulus. These data are crucial to our understanding of how fluctuating hormone levels can render females increasing sensitive to the rewarding effects of cocaine.

2.
J Appl Physiol (1985) ; 127(3): 698-706, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31318612

RESUMO

Near-infrared diffuse correlation spectroscopy (DCS) is a rapidly evolving optical imaging technique for the assessment of skeletal muscle O2 utilization (mVO2). We compared DCS-derived determinants of mVO2 with conventional measures [blood flow by brachial artery Doppler ultrasound and venous O2 saturation (SVO2)] in eight volunteers at rest and during incremental handgrip exercise. Brachial artery blood flow and DCS-derived blood flow index (BFI) were linearly related (R2 = 0.57) and increased with each workload, whereas SVO2 decreased from 65.3 ± 2.5% (rest) to 39.9 ± 3.0% (light exercise; P < 0.01) with no change thereafter. In contrast, DCS-derived tissue O2 saturation decreased progressively with each incremental stage (P < 0.01), driven almost entirely by an initial steep rise in deoxyhemoglobin/myoglobin, followed by a linear increase thereafter. Whereas seemingly disparate at first glance, we believe these two approaches provide similar information. Indeed, by plotting the mean convective O2 delivery and diffusive O2 conductance, we show that the initial increase in mVO2 during the transition from rest to exercise was achieved by a greater increase in diffusive O2 conductance versus convective O2 delivery (10-fold vs. 4-fold increase, respectively), explaining the initial decline in SVO2. In contrast, the increase in mVO2 from light to heavy exercise was achieved by equal increases (1.8-fold) in convective O2 delivery and diffusive O2 conductance, explaining the plateau in SVO2. That DCS-derived BFI and deoxyhemoglobin/myoglobin (surrogate measure of O2 extraction) share the same general biphasic pattern suggests that both DCS and conventional approaches provide complementary information regarding the determinants of mVO2.NEW & NOTEWORTHY Near-infrared diffuse correlation spectroscopy (DCS) is an emerging optical imaging technique for quantifying skeletal muscle O2 delivery and utilization at the microvascular level. Here, we show that DCS provides complementary insight into the determinants of muscle O2 consumption across a wide range of exercise intensities, further establishing the utility of DCS.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Difusão , Força da Mão , Voluntários Saudáveis , Humanos , Masculino , Adulto Jovem
3.
J Physiol ; 597(11): 2887-2901, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30982990

RESUMO

KEY POINTS: Diffuse correlation spectroscopy (DCS) is emerging as a powerful tool to assess skeletal muscle perfusion. Near-infrared spectroscopy (NIRS) is an established technique for characterizing the transport and utilization of oxygen through the microcirculation. Here we compared a combined NIRS-DCS system with conventional measures of oxygen delivery and utilization during handgrip exercise. The data show good concurrent validity between convective oxygen delivery and DCS-derived blood flow index, as well as between oxygen extraction at the conduit and microvascular level. We then manipulated forearm arterial perfusion pressure by adjusting the position of the exercising arm relative to the position of the heart. The data show that microvascular perfusion can be uncoupled from convective oxygen delivery, and that tissue saturation seemingly compensates to maintain skeletal muscle oxygen consumption. Taken together, these data support a novel role for NIRS-DCS in understanding the determinants of muscle oxygen consumption at the microvascular level. ABSTRACT: Diffuse correlation spectroscopy (DCS) is emerging as a powerful tool to assess skeletal muscle perfusion. Combining DCS with near-infrared spectroscopy (NIRS) introduces exciting possibilities for understanding the determinants of muscle oxygen consumption; however, no investigation has directly compared NIRS-DCS to conventional measures of oxygen delivery and utilization in an exercising limb. To address this knowledge gap, nine healthy males performed rhythmic handgrip exercise with simultaneous measurements by NIRS-DCS, Doppler blood flow and venous oxygen content. The two approaches showed good concurrent validity, with directionally similar responses between: (a) Doppler-derived forearm blood flow and DCS-derived blood flow index (BFI), and (b) venous oxygen saturation and NIRS-derived tissue saturation. To explore the utility of combined NIRS-DCS across the physiological spectrum, we manipulated forearm arterial perfusion pressure by altering the arm position above or below the level of the heart. As expected, Doppler-derived skeletal muscle blood flow increased with exercise in both arm positions, but with markedly different magnitudes (below: +424.3 ± 41.4 ml/min, above: +306 ± 12.0 ml/min, P = 0.002). In contrast, DCS-derived microvascular BFI increased to a similar extent with exercise, regardless of arm position (P = 0.65). Importantly, however, the time to reach BFI steady state was markedly slower with the arm above the heart, supporting the experimental design. Notably, we observed faster tissue desaturation at the onset of exercise with the arm above the heart, resulting in similar muscle oxygen consumption profiles throughout exercise. Taken together, these data support a novel role for NIRS-DCS in understanding the determinants of skeletal muscle oxygen utilization non-invasively and throughout exercise.


Assuntos
Força da Mão/fisiologia , Músculo Esquelético/fisiologia , Consumo de Oxigênio , Adulto , Artéria Braquial/fisiologia , Exercício Físico/fisiologia , Antebraço/irrigação sanguínea , Antebraço/fisiologia , Humanos , Masculino , Músculo Esquelético/irrigação sanguínea , Fluxo Sanguíneo Regional , Espectroscopia de Luz Próxima ao Infravermelho , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...