Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Conserv Biol ; 38(2): e14162, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37551767

RESUMO

Trade in pangolins is illegal, and yet tons of their scales and products are seized at various ports. These large seizures are challenging to process and comprehensively genotype for upstream provenance tracing and species identification for prosecution. We implemented a scalable DNA barcoding pipeline in which rapid DNA extraction and MinION sequencing were used to genotype a substantial proportion of pangolin scales subsampled from 2 record shipments seized in Singapore in 2019 (37.5 t). We used reference sequences to match the scales to phylogeographical regions of origin. In total, we identified 2346 cytochrome b (cytb) barcodes of white-bellied (Phataginus tricuspis) (from 1091 scales), black-bellied (Phataginus tetradactyla) (227 scales), and giant (Smutsia gigantea) (1028 scales) pangolins. Haplotype diversity was higher for P. tricuspis scales (121 haplotypes, 66 novel) than that for P. tetradactyla (22 haplotypes, 15 novel) and S. gigantea (25 haplotypes, 21 novel) scales. Of the novel haplotypes, 74.2% were likely from western and west-central Africa, suggesting potential resurgence of poaching and newly exploited populations in these regions. Our results illustrate the utility of extensively subsampling large seizures and outline an efficient molecular approach for rapid genetic screening that should be accessible to most forensic laboratories and enforcement agencies.


Revelación de la magnitud de la caza furtiva del pangolín africano mediante el genotipo extenso de nanoporos de ADN de escamas incautadas Resumen Aunque el mercado de pangolines es ilegal, se incautan toneladas de sus escamas y productos derivados en varios puertos comerciales. Es un reto procesar estas magnas incautaciones y obtener el genotipo completo para usarlo en la trazabilidad logística ascendente e identificación de la especie y así imponer sanciones. Implementamos una canalización escalable del código de barras de ADN en el cual usamos la extracción rápida de ADN y la secuenciación MinION para obtener el genotipo de una proporción sustancial de las escamas de pangolín submuestreadas en dos cargamentos incautados en 2019 en Singapur (37.5 t). Usamos secuencias referenciales para emparejar las escamas con las regiones filogeográficas de origen. Identificamos en total 2,346 códigos de citocromo b (cytb) del pangolín de vientre blanco (Phataginus tricuspis) (de 1,091 escamas), de vientre negro (P. tetradactyla) (227 escamas) y del pangolín gigante (Smutsia gigantea) (1,028 escamas). La diversidad de haplotipos fue mayor en las escamas de P. tricuspis (121 haplotipos, 66 nuevos) que en las de P. tetradactyla (22 haplotipos, 15 nuevos) y S. gigantea (25 haplotipos, 21 nuevos). De los haplotipos nuevos, el 74.2% probablemente provenía del occidente y centro­occidente de África, lo que sugiere un resurgimiento potencial de la caza furtiva y poblaciones recién explotadas en estas regiones. Nuestros resultados demuestran la utilidad de submuestrear extensivamente las grandes incautaciones y esboza una estrategia molecular eficiente para un análisis genético rápido que debería ser accesible para la mayoría de los laboratorios forenses y las autoridades de aplicación.


Assuntos
Nanoporos , Pangolins , Humanos , Animais , Genótipo , Conservação dos Recursos Naturais/métodos , DNA , Convulsões
2.
Forensic Sci Int Genet ; 68: 102975, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984157

RESUMO

We report on the detection and visualisation of latent DNA from pangolin scales deposited onto a plastic packaging material through the use of a nucleic acid staining dye. This latent DNA deposited by pangolin scales was subsequently isolated and analysed using DNA barcoding method. Pangolins are the most illegally traded mammalian species due to the demand for their scales and meat. The demand for their scales were mostly fuelled by its use in traditional medicines. The scales are usually packed into bags and transported globally via sea routes. This is the first report detailing the detection of trace latent DNA from processed wildlife products, on surfaces of bags that they were packaged in. Prior to this report, it was not known if the dried pangolin scales contained transferable quantities of biological material for DNA analyses. To address this, scales were removed from a roadkill Sunda pangolin (Manis javanica), processed by drying and packaged into one of five plastic bags. The presence of pangolin latent DNA was detected on the surface of the plastic bags and visualised using Diamond™ nucleic acid dye. Swabs were then used to recover the stained biological material from various locations in the five bags. The DNA was isolated and quantified using a newly designed quantitative PCR (qPCR) specific to M. javanica to amplify a fragment of the mitochondrial DNA cytochrome b gene. There was a positive correlation between the number of stained particles and DNA quantity, and a greater number of stained particles were found at the bottom of the bag than were found at the top. Conventional PCR targeting part of the cyt b gene amplified a product from all 30 samples taken from the bags and in all cases, sequence data generated matched that of the Sunda pangolin, as expected. All negative controls yielded no results. The method described here is the very first use of a nucleic acid staining dye to detect latent DNA from a mammalian species, other than humans, and highlights the opportunity for further use of Diamond™ nucleic acid dye in wildlife forensic science. It is anticipated that this method will be invaluable in retrieving latent DNA deposited by wildlife products from the environment in which they were contained, to determine the presence of these illegal wildlife products even when previously hidden, inaccessible, or no longer present physically. Further research is required to understand if the use on non-human mammalian wildlife species is feasible.


Assuntos
Mamíferos , Pangolins , Animais , Humanos , Pangolins/genética , Mamíferos/genética , Animais Selvagens/genética , DNA Mitocondrial/genética , Reação em Cadeia da Polimerase
3.
Parasit Vectors ; 16(1): 432, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993967

RESUMO

BACKGROUND: Babesia is a protozoal, tick-borne parasite that can cause life-threatening disease in humans, wildlife and domestic animals worldwide. However, in Southeast Asia, little is known about the prevalence and diversity of Babesia species present in wildlife and the tick vectors responsible for its transmission. Recently, a novel Babesia species was reported in confiscated Sunda pangolins (Manis javanica) in Thailand. To investigate the presence of this parasite in Singapore, we conducted a molecular survey of Babesia spp. in free-roaming Sunda pangolins and their main ectoparasite, the Amblyomma javanense tick. METHODS: Ticks and tissue samples were opportunistically collected from live and dead Sunda pangolins and screened using a PCR assay targeting the 18S rRNA gene of Babesia spp. DNA barcoding of the cytochrome oxidase subunit I (COI) mitochondrial gene was used to confirm the species of ticks that were Babesia positive. RESULTS: A total of 296 ticks and 40 tissue samples were obtained from 21 Sunda pangolins throughout the 1-year study period. Babesia DNA was detected in five A. javanense ticks (minimum infection rate = 1.7%) and in nine different pangolins (52.9%) located across the country. Phylogenetic analysis revealed that the Babesia 18S sequences obtained from these samples grouped into a single monophyletic clade together with those derived from Sunda pangolins in Thailand and that this evolutionarily distinct species is basal to the Babesia sensu stricto clade, which encompasses a range of Babesia species that infect both domestic and wildlife vertebrate hosts. CONCLUSIONS: This is the first report documenting the detection of a Babesia species in A. javanense ticks, the main ectoparasite of Sunda pangolins. While our results showed that A. javanense can carry this novel Babesia sp., additional confirmatory studies are required to demonstrate vector competency. Further studies are also necessary to investigate the role of other transmission pathways given the low infection rate of ticks in relation to the high infection rate of Sunda pangolins. Although it appears that this novel Babesia sp. is of little to no pathogenicity to Sunda pangolins, its potential to cause disease in other animals or humans cannot be ruled out.


Assuntos
Babesia , Parasitos , Carrapatos , Animais , Humanos , Babesia/genética , Pangolins , Amblyomma , Filogenia , Animais Selvagens
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...