Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37762235

RESUMO

COVID-19 pandemic, caused by the SARS-CoV-2 virus, is still affecting the entire world via the rapid emergence of new contagious variants. Vaccination remains the most effective prevention strategy for viral infection, yet not all countries have sufficient access to vaccines due to limitations in manufacturing and transportation. Thus, there is an urgent need to develop an easy-to-use, safe, and low-cost vaccination approach. Genetically modified microorganisms, especially probiotics, are now commonly recognized as attractive vehicles for delivering bioactive molecules via oral and mucosal routes. In this study, Lactobacillus casei has been selected as the oral vaccine candidate based on its' natural immunoadjuvant properties and the ability to resist acidic gastric environment, to express antigens of SARS-CoV-2 Omicron variant B.1.1.529 with B-cell and T-cell epitopes. This newly developed vaccine, OMGVac, was shown to elicit a robust IgG systemic immune response against the spike protein of Omicron variant B.1.1.529 in Golden Syrian hamsters. No adverse effects were found throughout this study, and the overall safety was evaluated in terms of physiological and histopathological examinations of different organs harvested. In addition, this study illustrated the use of the recombinant probiotic as a live delivery vector in the initiation of systemic immunity, which shed light on the future development of next-generation vaccines to combat emerging infectious diseases.


Assuntos
COVID-19 , Vacinas , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , Vacinas contra COVID-19 , Pandemias , COVID-19/prevenção & controle , Mesocricetus
2.
Cell Biosci ; 12(1): 210, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585695

RESUMO

BACKGROUND: In neuroblastoma, hyperactivation of the PI3K signaling pathway has been correlated with aggressive neuroblastomas, suggesting PI3Ks as promising targets for the treatment of neuroblastoma. However, the oncogenic roles of individual PI3K isoforms in neuroblastoma remain elusive. RESULTS: We found that PI3K isoform p110α was expressed at higher levels in neuroblastoma tissues compared with normal tissues, and its high expression was correlated with an unfavorable prognosis of neuroblastoma. Accordingly, PI3K activation in neuroblastoma cells was predominantly mediated by p110α but not by p110ß or p110δ. Suppression of p110α inhibited the growth of neuroblastoma cells both in vitro and in vivo, suggesting a crucial role of p110α in the tumorigenesis of neuroblastoma. Mechanistically, inhibition of p110α decreased anaplastic lymphoma kinase (ALK) in neuroblastoma cells by decreasing its protein stability. CONCLUSIONS: In this study, we investigated the oncogenic roles of PI3K isoforms in neuroblastoma. Our data shed light on PI3K isoform p110α in the tumorigenesis of neuroblastoma, and strongly suggest the p110α inhibitors as potential drugs in treating neuroblastoma.

3.
Front Oncol ; 12: 910728, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408158

RESUMO

The glycoprotein YKL-40 has been well studied as a serum biomarker of prognosis and disease status in glioblastoma. YKL-40 is a chitinase-like protein with defective chitinase activity that plays an important role in promoting cell proliferation, migration, and metastasis in glioblastoma multiforme (GBM). The short variant (SV) of YKL-40, generated by an alternative splicing event that splices out exon 8, was reported in the early developing human musculoskeletal system, although its role in GBM is still unknown. Our results showed that individual glioblastoma cell lines displayed increased expression of the short variant of YKL-40 after low serum treatment. In addition, unlike the full-length (FL) version, which was localized to all cell compartments, the short isoform could not be secreted and was localized only to the cytoplasm. Functionally, FL YKL-40 promoted cell proliferation and migration, whereas SV YKL-40 suppressed them. Transcriptome analysis revealed that these opposing roles of the two isoforms may be modulated by differentially regulating several oncogenic-related pathways, including p53, the G2/M checkpoint, and MYC-related signaling. This study may provide new ideas for the development of targeted anti-YKL-40 therapy in GBM treatment.

4.
Stem Cell Res Ther ; 13(1): 188, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526071

RESUMO

BACKGROUND: Accumulating evidence supports that prostate cancer stem-like cells (PCSCs) play significant roles in therapy resistance and metastasis of prostate cancer. Many studies also show that nitric oxide (NO) synthesized by NO synthases can function to promote tumor progression. However, the exact roles of NOSs and NO signaling in the growth regulation of PCSCs and castration-resistant prostate cancer (CRPC) are still not fully understood. METHODS: The regulatory functions of NOS-NO signaling were evaluated in prostate cancer cells, especially in PCSCs enriched by 3D spheroid culture and CD133/CD44 cell sorting. The molecular mechanisms of NOS-NO signaling in PCSCs growth regulation and tumor metastasis were investigated in PCSCs and mice orthotopic prostate tumor model. RESULTS: Endothelial NOS (eNOS) exhibited a significant upregulation in high-grade prostate cancer and metastatic CRPC. Xenograft models of CRPC exhibited notable increased eNOS expression and higher intracellular NO levels. PCSCs isolated from various models displayed significant enhanced eNOS-NO signaling. Functional analyses demonstrated that increased eNOS expression could promote in vivo tumorigenicity and metastatic potential of prostate cancer cells. Characterization of eNOS-NO involved downstream pathway which confirmed that enhanced eNOS signaling could promote the growth of PCSCs and antiandrogen-resistant prostate cancer cells via an activated downstream NO-sGC-cGMP-PKG effector signaling pathway. Interestingly, eNOS expression could be co-targeted by nuclear receptor ERRα and transcription factor ERG in prostate cancer cells and PCSCs. CONCLUSIONS: Enhanced eNOS-NO signaling could function to promote the growth of PCSCs and also the development of metastatic CRPC. Besides eNOS-NO as potential targets, targeting its upstream regulators (ERRα and ERG) of eNOS-NO signaling could also be the therapeutic strategy for the management of advanced prostate cancer, particularly the aggressive cancer carrying with the TMPRSS2:ERG fusion gene.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Células-Tronco Neoplásicas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Transdução de Sinais
5.
Cancer Lett ; 429: 54-65, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29729901

RESUMO

Constitutive activation of the phosphoinositide 3-kinase/AKT signaling pathway is frequently observed in high-grade gliomas with high frequency of losing PTEN tumor suppressor. To identify transcriptomic profiles associated with a hyperactivated PI3K pathway, RNA-sequencing analysis was performed in a glioblastoma cell line stably expressing PTEN. RNA-sequencing revealed enriched transcripts of pro-inflammatory mediators, and among the genes that displayed high differential expression was the secreted glycoprotein YKL-40. Treatment with chemical inhibitors that target the PI3K/AKT pathway elicited differential effects on YKL-40 expression in selected GBM cell lines, indicating that its expression displayed tumor cell-specific variations. This variability appeared to be correlated with the ability to transactivate the immune signaling molecules JAK2 and STAT3. In summary, the differential expression of the immunomodulatory molecule YKL-40 may affect the treatment efficacy of PI3K/AKT-based pathway inhibitors in glioblastoma.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Proteína 1 Semelhante à Quitinase-3/genética , Perfilação da Expressão Gênica , Glioblastoma/genética , Transdução de Sinais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proteína 1 Semelhante à Quitinase-3/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Glioblastoma/patologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Autism Res ; 11(8): 1098-1109, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29608813

RESUMO

PTEN is a tumor suppressor gene inactivated in over 30% of human cancers. It encodes a lipid phosphatase that serves as a gatekeeper of the phosphoinositide 3-kinase signaling pathway. Germline mutation frequently occurs in this gene in patients diagnosed with PTEN Hamartoma Tumor Syndrome (PHTS). PHTS individuals are characterized by macrocephaly, benign growth of multiple tissues and increased tumor risk. In addition, autistic phenotypes are found in 10-20% of individuals carrying the germline PTEN mutation with macrocephaly. In this report, 13 suspected PHTS patients were screened for mutation in the PTEN gene. A missense variant (c. 302T > C) substituting the isoleucine at codon 101 to a threonine, a single nucleotide insertion (c. 327-328insC) causing a frame shift mutation and termination at codon 109, and a nonsense variant (c. 1003C > T) truncated the protein at codon 335 were identified. The I101T mutation significantly reduced PTEN protein expression levels by 2.5- to 4.0-fold. Mechanistically, I101T reduced the protein half-life of PTEN possibly due to enhanced polyubiquitination at Lysine 13. However, the I101T mutant retained almost 30% of the lipid phosphatase activity of the wild-type protein. Finally, the I101T mutant has reduced phosphorylation at a PTEN auto-dephosphorylation site at Threonine 366 and a lowered ratio of nuclear to cytosolic protein level. These partial losses of multiple PTEN biochemical functions may contribute to the tissue overgrowth and autistic features of this PHTS patient. Autism Res 2018, 11: 1098-1109. © 2018 The Authors Autism Research published by International Society for Autism Research and Wiley Periodicals, Inc. LAY SUMMARY: The genetics of autism spectrum disorders is highly complex with individual risk influenced by both genetic and environmental factors. Mutation in the human PTEN gene confers a high risk of developing autistic behavior. This report revealed that PTEN mutations occurred in 23% of a selected group of Hong Kong patients harboring autistic features with gross overgrowth symptoms. Detailed characterization of a PTEN mutation revealed reduced protein stability as one of the underlying mechanisms responsible for reduced PTEN activity.


Assuntos
Transtorno do Espectro Autista/genética , Megalencefalia/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , PTEN Fosfo-Hidrolase/genética , Monoéster Fosfórico Hidrolases/metabolismo , Transtorno do Espectro Autista/complicações , Western Blotting , Células Cultivadas , Criança , Feminino , Imunofluorescência , Hong Kong , Humanos , Masculino , Megalencefalia/complicações , Transtornos do Neurodesenvolvimento/complicações , Fosfatidilinositol 3-Quinases , Monoéster Fosfórico Hidrolases/genética , Estabilidade Proteica
7.
Biochem Pharmacol ; 142: 58-70, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28669564

RESUMO

Eriocalyxin B (EriB), a natural ent-kaurane diterpenoid presented in the plant Isodon eriocalyx var. laxiflora, has been reported to diminish angiogenesis-dependent breast tumor growth. In the present study, the effects of EriB on human breast cancer and its underlying mechanisms were further investigated. The in vitro anti-breast cancer activity of EriB was determined using MCF-7 and MDA-MB-231 cell lines. MDA-MB-231 xenograft model of human breast cancer was also established to explore the anti-tumor effect in vivo. We found that EriB was able to induce apoptosis accompanied by the activation of autophagy, which was evidenced by the increased accumulation of autophagosomes, acidic vesicular organelles formation, the microtubule-associated protein 1A/1B-light chain 3B-II (LC3B-II) conversion from LC3B-I and p62 degradation. Meanwhile, EriB treatment time-dependently decreased the phosphorylation of Akt, mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase (p70S6K), leading to the inhibition of Akt/mTOR/p70S6K signaling pathway. Moreover, the blockage of autophagy obviously sensitized EriB-induced cell death, which suggested the cytoprotective function of autophagy in both MCF-7 and MDA-MB-231 cells. Interestingly, the autophagic features and apoptosis induction were prevented by reactive oxygen species (ROS) scavenger N-acetyl-l-cysteine, indicating that ROS played an essential role in the mediation of EriB-induced cell death. Furthermore, in MDA-MB-231 xenograft model, EriB displayed a significant anti-tumor effect via the activation of autophagy and apoptosis in breast tumor cells. Taken together, our findings firstly demonstrated that EriB suppressed breast cancer cells growth both in vitro and in vivo, and thus could be developed as a promising anti-breast tumor agent.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias da Mama , Diterpenos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Diterpenos/isolamento & purificação , Diterpenos/uso terapêutico , Feminino , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Curr Pharm Des ; 21(21): 2924-41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26004418

RESUMO

Gastrointestinal (GI) tract cancers account for a significant proportion of human malignancies. While classical multistep carcinogenesis is characterized by the stochastic accumulation of genetic mutations, additional extrinsic factors can also contribute to tumor promotion. Inflammation plays a critical role in cancers of the GI tract, for which the two major etiological factors are tissue injuries and altered microbiota. Together with infiltrating immune cells, all of these components generate a dynamic tumor microenvironment that inevitably induces malignant progression and metastatic growth. Crosstalk between tumor and immune cells is mediated by a multitude of pro- and anti- inflammatory cytokines. Their biological actions are propagated in both tumor and immune cells through an intricate network of intracellular signaling pathways that ultimately modulate essential cellular functions such as tumorigenic properties and lineage specification. Using the vast amount of information stored in the database on genetic changes associated with human cancers that has been collected over the past decades, this book chapter will first profile the genomic and transcriptomic landscapes of some of the major GI tract cancers. Critical driver genes and pro-inflammatory cytokines will be discussed in detail. The mechanisms by which genetic mutations in cancer cells can provoke inflammation and vice versa will be explored. The way in which the symbiotic relationship between cancer cells and chronic inflammation can modulate tumor cell behavior will be examined. We will present some of the most recent advancements in the targeting of inflammation for the treatment of GI tract cancers.


Assuntos
Gastroenterite/complicações , Gastroenterite/genética , Neoplasias Gastrointestinais/etiologia , Neoplasias Gastrointestinais/genética , Animais , Carcinogênese , Humanos , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...