Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomater Sci Polym Ed ; 29(13): 1625-1642, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29862935

RESUMO

A promising component of biomaterial constructs for neural tissue engineering are electrospun fibers, which differentiate stem cells and neurons as well as direct neurite growth. However, means of protecting neurons, glia, and stem cells seeded on electrospun fibers between lab and surgical suite have yet to be developed. Here we report an effort to accomplish this using cell-encapsulating hydrogel fibers made by interfacial polyelectrolyte complexation (IPC). IPC-hydrogel fibers were created by interfacing acid-soluble chitosan (AsC) and cell-containing alginate and spinning them on bundles of aligned electrospun fibers. Primary spinal astrocytes, cortical neurons, or L929 fibroblasts were mixed into alginate hydrogels prior to IPC-fiber spinning. The viability of each cell type was assessed at 30 min, 4 h, 1 d, and 7 d after encapsulation in IPC hydrogels. Some neurons were encapsulated in IPC-hydrogel fibers made from water-soluble chitosan (WsC). Neurons were also stained with Tuj1 and assessed for neurite extension. Neuron survival in AsC-fibers was worse than astrocytes in AsC-fibers (p < 0.05) and neurons in WsC-fibers (p < 0.05). As expected, neuron and glia survival was worse than L929 fibroblasts (p < 0.05). Neurons in IPC-hydrogel fibers fabricated with WsC extended neurites robustly, while none in AsC fibers did. Neurons remaining inside IPC-hydrogel fibers extended neurites inside them, while others de-encapsulated, extending neurites on electrospun fibers, which did not fully integrate with IPC-hydrogel fibers. This study demonstrates that primary neurons and astrocytes can be encapsulated in IPC-hydrogel fibers at good percentages of survival. IPC hydrogel technology may be a useful tool for encapsulating neural and other cells on electrospun fiber scaffolds.


Assuntos
Hidrogéis/química , Nanofibras/química , Tecido Nervoso/química , Alicerces Teciduais/química , Alginatos/química , Animais , Astrócitos/citologia , Materiais Biocompatíveis/química , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Quitosana/química , Fibroblastos/citologia , Humanos , Tecido Nervoso/metabolismo , Neuritos/química , Neurônios/citologia , Tamanho da Partícula , Ratos Sprague-Dawley , Propriedades de Superfície , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...