Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
3.
EJNMMI Radiopharm Chem ; 8(1): 24, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37750937

RESUMO

BACKGROUND: Trastuzumab (Herceptin) has improved the outcome for patients with HER2-positive breast cancer (BC) but brain metastases (BM) remain a challenge due to poor uptake of trastuzumab into the brain. Radioimmunotherapy (RIT) with trastuzumab labeled with α-particle emitting, 225Ac may overcome this challenge by increasing the cytotoxic potency on HER2-positive BC cells. Our first aim was to synthesize and characterize [111In]In-DOTA-trastuzumab and [225Ac]Ac-DOTA-trastuzumab as a theranostic pair for imaging and RIT of HER2-positive BC, respectively. A second aim was to estimate the cellular dosimetry of [225Ac]Ac-DOTA-trastuzumab and determine its cytotoxicity in vitro on HER2-positive BC cells. A third aim was to study the tumour and normal tissue uptake of [225Ac]Ac-DOTA-trastuzumab using [111In]In-DOTA-trastuzumab as a radiotracer in vivo in NRG mice with s.c. 164/8-1B/H2N.luc+ human BC tumours that metastasize to the brain. RESULTS: Trastuzumab was conjugated to 12.7 ± 1.2 DOTA chelators and labeled with 111In or 225Ac. [111In]In-DOTA-trastuzumab exhibited high affinity specific binding to HER2-positive SK-BR-3 human BC cells (KD = 1.2 ± 0.3 × 10-8 mol/L). Treatment with [225Ac]Ac-DOTA-trastuzumab decreased the surviving fraction (SF) of SK-BR-3 cells dependent on the specific activity (SA) with SF < 0.001 at SA = 0.74 kBq/µg. No surviving colonies were noted at SA = 1.10 kBq/µg or 1.665 kBq/µg. Multiple DNA double-strand breaks (DSBs) were detected in SK-BR-3 cells exposed to [225Ac]Ac-DOTA-trastuzumab by γ-H2AX immunofluorescence microscopy. The time-integrated activity of [111In]In-DOTA-trastuzumab in SK-BR-3 cells was measured and used to estimate the absorbed doses from [225Ac]Ac-DOTA-trastuzumab by Monte Carlo N-Particle simulation for correlation with the SF. The dose required to decrease the SF of SK-BR-3 cells to 0.10 (D10) was 1.10 Gy. Based on the D10 reported for γ-irradiation of SK-BR-3 cells, we estimate that the relative biological effectiveness of the α-particles emitted by 225Ac is 4.4. Biodistribution studies in NRG mice with s.c. 164/8-1B/H2N.luc+ human BC tumours at 48 h post-coinjection of [111In]In-DOTA-trastuzumab and [225Ac]Ac-DOTA-trastuzumab revealed HER2-specific tumour uptake (10.6 ± 0.6% ID/g) but spleen uptake was high (28.9 ± 7.4% ID/g). Tumours were well-visualized by SPECT/CT imaging using [111In]In-DOTA-trastuzumab. CONCLUSION: We conclude that [225Ac]Ac-DOTA-trastuzumab exhibited potent and HER2-specific cytotoxicity on SK-BR-3 cells in vitro and HER2-specific uptake in s.c. 164/8-1B/H2N.luc+ human BC tumours in NRG mice, and these tumours were imaged by SPECT/CT with [111In]In-DOTA-trastuzumab. These results are promising for combining [111In]In-DOTA-trastuzumab and [225Ac]Ac-DOTA-trastuzumab as a theranostic pair for imaging and RIT of HER2-positive BC.

5.
NPJ Vaccines ; 8(1): 127, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626082

RESUMO

Tuberculosis (TB) is an airborne disease caused by Mycobacterium tuberculosis (Mtb). Whilst a functional role for humoral immunity in Mtb protection remains poorly defined, previous studies have suggested that antibodies can contribute towards host defense. Thus, identifying the critical components in the antibody repertoires from immune, chronically exposed, healthy individuals represents an approach for identifying new determinants for natural protection. In this study, we performed a thorough analysis of the IgG/IgA memory B cell repertoire from occupationally exposed, immune volunteers. We detail the identification and selection of a human monoclonal antibody that exhibits protective activity in vivo and show that it targets a virulence factor LpqH. Intriguingly, protection in both human ex vivo and murine challenge experiments was isotype dependent, with most robust protection being mediated via IgG2 and IgA. These data have important implications for our understanding of natural mucosal immunity for Mtb and highlight a new target for future vaccine development.

6.
J Infect Dis ; 227(8): 1002-1006, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36200239

RESUMO

Serological testing of Singaporeans who received childhood smallpox vaccination found anti-vaccinia IgG binding and neutralizing activity indicating long-term humoral immunity. There was correlation between IgG and neutralizing titers indicating IgG could be used as a surrogate marker for humoral immunity. In 2019, Singapore experienced a case of imported monkeypox. As with smallpox, disease can be prevented through vaccination, which was mandatory for Singaporean infants until 1981. However, the degree of residual immunity in older vaccinated Singaporeans remains unknown. Sera from individuals born 1946-1984 were therefore tested and those born prior to 1981 were found to have higher anti-vaccinia IgG and neutralizing activity titers. This suggests that protective humoral immunity remains, which could reduce disease severity in an orthopoxvirus outbreak. Correlation between IgG and neutralizing titers was observed indicating that serology could be used as a surrogate marker for immunity.


Assuntos
Vacina Antivariólica , Varíola , Vacínia , Vírus da Varíola , Lactente , Humanos , Criança , Idoso , Imunidade Humoral , Varíola/prevenção & controle , Vaccinia virus , Vacinação , Imunoglobulina G , Anticorpos Antivirais
7.
EJNMMI Radiopharm Chem ; 7(1): 33, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542157

RESUMO

BACKGROUND: 111In[In]-BnDTPA-trastuzumab-NLS is a radiopharmaceutical with theranostic applications for imaging and Meitner-Auger electron (MAE) radioimmunotherapy (RIT) of HER2-positive breast cancer (BC). Nuclear localization sequence (NLS) peptides route the radiopharmaceutical to the nucleus of HER2-positive BC cells following receptor-mediated internalization for RIT with subcellular range MAEs. The γ-photons emitted by 111In permit tumour imaging by SPECT. Our aim was to formulate a kit under Good Manufacturing Practices conditions to prepare 111In[In]-BnDTPA-trastuzumab-NLS injection for a first-in-human clinical trial. RESULTS: Trastuzumab was derivatized with p-SCN-BnDTPA to introduce Bn-DTPA for complexing 111In, then modified with maleimide groups for conjugation to the thiol on cysteine in NLS peptides [CGYGPKKKRKVGG]. BnDTPA-trastuzumab-NLS (5 mg in 1.0 mL of 0.05 M ammonium acetate buffer, pH 5.5) was dispensed into unit dose sterile glass vials to produce kits for labeling with 100-165 MBq of 111In[In]Cl3. The kits met specifications for protein concentration (4.5-5.5 mg/mL), volume (0.95-1.05 mL), pH (5.5-6.0), appearance (clear, pale-yellow, particulate-free), BnDTPA substitution level (2.0-7.0 BnDTPA/trastuzumab), purity and homogeneity (SDS-PAGE and SE-HPLC), 111In labeling efficiency (> 90%), binding to HER2-positive SK-BR-3 human breast cancer cells (Ka = 1-8 × 108 L/mmol; Bmax = 0.5-2 × 106 sites/cell), NLS peptide conjugation (upward band shift on SDS-PAGE), sterility (USP Sterility Test) and endotoxins (USP Bacterial Endotoxins Test). 111In-BnDTPA-trastuzumab-NLS injection met specifications for pH (5.5-6.5), radiochemical purity (≥ 90%), radionuclide purity (≥ 99%), appearance (clear, colourless, particle-free) and sterility (retrospective USP Sterility Test). Kits were stable stored at 2-8 °C for up to 661 days (d) meeting all key specifications. Protein concentration remained within or just slightly greater than the specification for up to 139 d. 111In[In]-BnDTPA-trastuzumab-NLS injection was stable for up to 24 h. An expiry of 180 d was assigned for the kits and 8 h for the final radiopharmaceutical. CONCLUSION: A kit was formulated under GMP conditions for preparing 111In[In]-BnDTPA-trastuzumab-NLS injection. This radiopharmaceutical was safely administered to 4 patients with HER2-positive BC to trace the uptake of trastuzumab into brain metastases before and after MRI-guided focused ultrasound (MRIg-FUS) by SPECT imaging.

8.
NPJ Vaccines ; 7(1): 121, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271019

RESUMO

Hepatitis B Virus (HBV) is a hepadnavirus that is the principal pathogen underlying viral liver disease in human populations. In this study, we describe the isolation and characterization of a fully human monoclonal antibody for HBV. This HuMab was isolated by a combinatorial screen of the memory B-cell repertoire from an acute/recovered HBV-infected patient. Lead candidate selection was based upon strong binding and neutralizing activity for live HBV. We provide a detailed biochemical/biophysical, and subclass characterization of its specificity and affinity against all of the principal HBV genotypes combined with a functional analysis of its in vitro activity. We also demonstrate its potential as a prophylaxis/therapy in vivo using human liver chimeric mouse models for HBV infection. These data have important implications for our understanding of natural human immunity to HBV and suggest that this potentially represents a new antibody-based anti-viral candidate for prophylaxis and/or therapy for HBV infection.

9.
Mol Pharm ; 19(11): 4199-4211, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36287201

RESUMO

The effectiveness and normal tissue toxicity of a novel nanoparticle depot (NPD) brachytherapy seed incorporating gold nanoparticles (AuNPs) labeled with ß-particle emitting, 90Y (termed a "radiation nanomedicine"), were studied for the treatment of 4T1 triple-negative murine mammary carcinoma tumors in Balb/c mice and for inducing an abscopal effect on a distant non-irradiated tumor alone or combined with anti-PD-L1 immune checkpoint antibodies. Balb/c mice with two subcutaneous 4T1 tumors─a primary tumor and a distant secondary tumor were implanted intratumorally (i.t.) in the primary tumor with NPD incorporating 3.5 MBq of 90Y-AuNPs (1 × 1014 AuNPs) or unlabeled AuNPs, alone or combined with systemically administered anti-PD-L1 antibodies (200 µg i.p. three times/week for 2 weeks) or received anti-PD-L1 antibodies alone or no treatment. The primary tumor was strongly growth-inhibited over 14 d by NPD incorporating 90Y-AuNPs but only very modestly inhibited by NPD incorporating unlabeled AuNPs. Anti-PD-L1 antibodies alone were ineffective, and combining anti-PD-L1 antibodies with NPD incorporating 90Y-AuNPs did not further inhibit the growth of the primary tumor. Secondary tumor growth was inhibited by treatment of the primary tumor with NPD incorporating 90Y-AuNPs, and growth inhibition was enhanced by anti-PD-L1 antibodies. Treatment of the primary tumor with NPD incorporating unlabeled AuNPs or anti-PD-L1 antibodies alone had no effect on secondary tumor growth. Biodistribution studies showed high uptake of 90Y in the primary tumor [516-810% implanted dose/g (%ID/g)] but very low uptake in the secondary tumor (0.033-0.16% ID/g) and in normal tissues (<0.5% ID/g) except for kidneys (5-8% ID/g). Very high radiation absorbed doses were estimated for the primary tumor (472 Gy) but very low doses in the secondary tumor (0.13 Gy). There was highdose-heterogeneity in the primary tumor with doses as high as 9964 Gy in close proximity to the NPD, decreasing rapidly with distance from the NPD. Normal organ doses were low (<1 Gy) except for kidneys (4 Gy). No normal tissue toxicity was observed, but white blood cell counts (WBC) decreased in tumor-bearing mice treated with NPD incorporating 90Y-AuNPs. Decreased WBC counts were interpreted as tumor response and not toxicity since these were higher than that in healthy non-tumor-bearing mice, and there was a direct association between WBC counts and 4T1 tumor burden. We conclude that implantation of NPD incorporating 90Y-AuNPs into a primary 4T1 tumor in Balb/c mice strongly inhibited tumor growth and combined with anti-PD-L1 antibodies induced an abscopal effect on a distant secondary tumor. This radiation nanomedicine is promising for the local treatment of triple-negative breast cancer tumors in patients, and these therapeutic effects may extend to non-irradiated lesions, especially when combined with checkpoint immunotherapy.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Distribuição Tecidual
10.
Infect Dis Ther ; 11(5): 1999-2015, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36058990

RESUMO

INTRODUCTION: AOD01 is a novel, fully human immunoglobulin (Ig) G1 neutralizing monoclonal antibody that was developed as a therapeutic against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). This first-in-human study assessed safety, tolerability, pharmacokinetics (PK), and pharmacodynamics of AOD01 in healthy volunteers. METHODS: Intravenous doses of AOD01 were evaluated in escalating cohorts [four single-dose cohorts (2, 5, 10, and 20 mg/kg) and one two-dose cohort (two doses of 20 mg/kg, 24 h apart)]. RESULTS: Twenty-three subjects were randomized to receive AOD01 or a placebo in blinded fashion. A total of 34 treatment-emergent adverse events (TEAEs) were reported; all were mild in severity. Related events (headache and diarrhea) were reported in one subject each. No event of infusion reactions, serious adverse event (SAE), or discontinuation due to AE were reported. The changes in laboratory parameters, vital signs, and electrocardiograms were minimal. Dose-related exposure was seen from doses 2 to 20 mg/kg as confirmed by Cmax and AUC0-tlast. The median Tmax was 1.5-3 h. Clearance was dose independent. Study results revealed long half-lives (163-465 h). Antidrug antibodies (ADA) to AOD01 were not detected among subjects, except in one subject of the two-dose cohort on day 92. Sustained ex vivo neutralization of SARS-CoV-2 was recorded until day 29 with single doses from 2 to 20 mg/kg and until day 43 with two doses of 20 mg/kg. CONCLUSIONS: AOD01 was safe and well tolerated, demonstrated dose-related PK, non-immunogenic status, and sustained ex vivo neutralization of SARS-CoV-2 after single intravenous dose ranging from 2 to 20 mg/kg and two doses of 20 mg/kg and show good potential for treatment of SARS-CoV-2 infection. (Health Sciences Authority identifier number CTA2000119).

11.
ACS Nano ; 16(9): 15141-15154, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35977379

RESUMO

Nanomedicine-based and unmodified drug interventions to address COVID-19 have evolved over the course of the pandemic as more information is gleaned and virus variants continue to emerge. For example, some early therapies (e.g., antibodies) have experienced markedly decreased efficacy. Due to a growing concern of future drug resistant variants, current drug development strategies are seeking to find effective drug combinations. In this study, we used IDentif.AI, an artificial intelligence-derived platform, to investigate the drug-drug and drug-dose interaction space of six promising experimental or currently deployed therapies at various concentrations: EIDD-1931, YH-53, nirmatrelvir, AT-511, favipiravir, and auranofin. The drugs were tested in vitro against a live B.1.1.529 (Omicron) virus first in monotherapy and then in 50 strategic combinations designed to interrogate the interaction space of 729 possible combinations. Key findings and interactions were then further explored and validated in an additional experimental round using an expanded concentration range. Overall, we found that few of the tested drugs showed moderate efficacy as monotherapies in the actionable concentration range, but combinatorial drug testing revealed significant dose-dependent drug-drug interactions, specifically between EIDD-1931 and YH-53, as well as nirmatrelvir and YH-53. Checkerboard validation analysis confirmed these synergistic interactions and also identified an interaction between EIDD-1931 and favipiravir in an expanded range. Based on the platform nature of IDentif.AI, these findings may support further explorations of the dose-dependent drug interactions between different drug classes in further pre-clinical and clinical trials as possible combinatorial therapies consisting of unmodified and nanomedicine-enabled drugs, to combat current and future COVID-19 strains and other emerging pathogens.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Amidas , Inteligência Artificial , Auranofina , Guanosina Monofosfato/análogos & derivados , Humanos , Fosforamidas , Pirazinas
12.
J Virol ; 96(13): e0045522, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35727030

RESUMO

A human monoclonal antibody panel (PD4, PD5, PD7, SC23, and SC29) was isolated from the B cells of convalescent patients and used to examine the S protein in SARS-CoV-2-infected cells. While all five antibodies bound conformational-specific epitopes within SARS-CoV-2 spike (S) protein, only PD5, PD7, and SC23 were able to bind to the receptor binding domain (RBD). Immunofluorescence microscopy was used to examine the S protein RBD in cells infected with the Singapore isolates SARS-CoV-2/0334 and SARS-CoV-2/1302. The RBD-binders exhibited a distinct cytoplasmic staining pattern that was primarily localized within the Golgi complex and was distinct from the diffuse cytoplasmic staining pattern exhibited by the non-RBD-binders (PD4 and SC29). These data indicated that the S protein adopted a conformation in the Golgi complex that enabled the RBD recognition by the RBD-binders. The RBD-binders also recognized the uncleaved S protein, indicating that S protein cleavage was not required for RBD recognition. Electron microscopy indicated high levels of cell-associated virus particles, and multiple cycle virus infection using RBD-binder staining provided evidence for direct cell-to-cell transmission for both isolates. Although similar levels of RBD-binder staining were demonstrated for each isolate, SARS-CoV-2/1302 exhibited slower rates of cell-to-cell transmission. These data suggest that a conformational change in the S protein occurs during its transit through the Golgi complex that enables RBD recognition by the RBD-binders and suggests that these antibodies can be used to monitor S protein RBD formation during the early stages of infection. IMPORTANCE The SARS-CoV-2 spike (S) protein receptor binding domain (RBD) mediates the attachment of SARS-CoV-2 to the host cell. This interaction plays an essential role in initiating virus infection, and the S protein RBD is therefore a focus of therapeutic and vaccine interventions. However, new virus variants have emerged with altered biological properties in the RBD that can potentially negate these interventions. Therefore, an improved understanding of the biological properties of the RBD in virus-infected cells may offer future therapeutic strategies to mitigate SARS- CoV-2 infection. We used physiologically relevant antibodies that were isolated from the B cells of convalescent COVID-19 patients to monitor the RBD in cells infected with SARS-CoV-2 clinical isolates. These immunological reagents specifically recognize the correctly folded RBD and were used to monitor the appearance of the RBD in SARS-CoV-2-infected cells and identified the site where the RBD first appears.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , COVID-19 , Glicoproteína da Espícula de Coronavírus , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/metabolismo , Humanos , Ligação Proteica , Domínios Proteicos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/síntese química , Glicoproteína da Espícula de Coronavírus/metabolismo
13.
NPJ Digit Med ; 5(1): 83, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773329

RESUMO

IDentif.AI-x, a clinically actionable artificial intelligence platform, was used to rapidly pinpoint and prioritize optimal combination therapies against COVID-19 by pairing a prospective, experimental validation of multi-drug efficacy on a SARS-CoV-2 live virus and Vero E6 assay with a quadratic optimization workflow. A starting pool of 12 candidate drugs developed in collaboration with a community of infectious disease clinicians was first narrowed down to a six-drug pool and then interrogated in 50 combination regimens at three dosing levels per drug, representing 729 possible combinations. IDentif.AI-x revealed EIDD-1931 to be a strong candidate upon which multiple drug combinations can be derived, and pinpointed a number of clinically actionable drug interactions, which were further reconfirmed in SARS-CoV-2 variants B.1.351 (Beta) and B.1.617.2 (Delta). IDentif.AI-x prioritized promising drug combinations for clinical translation and can be immediately adjusted and re-executed with a new pool of promising therapies in an actionable path towards rapidly optimizing combination therapy following pandemic emergence.

14.
Chin Med ; 17(1): 16, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073963

RESUMO

BACKGROUND: Parkinson's disease (PD) is a prevalent and debilitating condition. Conventional medications cannot control all symptoms and may inflict adverse effects. A survey reported that Chinese herbal medicine (CHM) is frequently sought. Existing CHM trials were contradictory and often of poor quality due to lack of methodological rigor. A national clinical guideline was drafted in China with diagnostic criteria and treatment strategy of Chinese medicine (CM) patterns subgroups of PD. The suggested CHM were found to exhibit neuroprotective effect in in vitro and in vivo studies. This trial aims to preliminarily assess the effect of CHM prescribed based on pattern differentiation on PD symptoms and patients' quality of life, and evaluate the feasibility of the trial design for a future large-scale trial. METHODS: This trial will be a pilot assessor- and data analyst blind, add-on, randomised, controlled, pragmatic clinical trial. 160 PD patients will be recruited and randomised into treatment or control groups in a 1:1 ratio. The trial will be conducted over 32 weeks. PD patients in the treatment group will be stratified into subgroups based on CM pattern and receive CHM accordingly in addition to conventional medication (ConM). The control group will receive ConM only. The primary outcome will be part II of the Movement Disorder Society Sponsored Revision of Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Secondary outcomes will include part and total scores of MDS-UPDRS, domain and total scores of Non-motor symptom scale (NMSS). Adverse events will be monitored by monthly follow-ups and questionnaires. Mixed models will be used to analyse data by Jamovi and R. EXPECTED OUTCOMES: The success of our trial will show that the pragmatic design with subgroup differentiation is feasible and can produce reliable results. It will also provide preliminary data of the effect of CHM on improving clinical outcomes and quality of PD patients. Data collected will be used to optimize study design of the future large-scale clinical study. ETHICAL CLEARANCE: Ethical clearance of this study was given by the Research Ethics Committee of Hong Kong Baptist University (REC/20-21/0206). Trial registration This trial is registered on ClinicalTrials.gov (NCT05001217, Date: 8/10/2021, https://clinicaltrials.gov/ct2/show/NCT05001217 ). Type of manuscript: clinical trial protocol (date: 3rd November, 2021, version 1).

15.
PLoS One ; 16(6): e0253487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34161386

RESUMO

Although SARS-CoV-2-neutralizing antibodies are promising therapeutics against COVID-19, little is known about their mechanism(s) of action or effective dosing windows. We report the generation and development of SC31, a potent SARS-CoV-2 neutralizing antibody, isolated from a convalescent patient. Antibody-mediated neutralization occurs via an epitope within the receptor-binding domain of the SARS-CoV-2 Spike protein. SC31 exhibited potent anti-SARS-CoV-2 activities in multiple animal models. In SARS-CoV-2 infected K18-human ACE2 transgenic mice, treatment with SC31 greatly reduced viral loads and attenuated pro-inflammatory responses linked to the severity of COVID-19. Importantly, a comparison of the efficacies of SC31 and its Fc-null LALA variant revealed that the optimal therapeutic efficacy of SC31 requires Fc-mediated effector functions that promote IFNγ-driven anti-viral immune responses, in addition to its neutralization ability. A dose-dependent efficacy of SC31 was observed down to 5mg/kg when administered before viral-induced lung inflammatory responses. In addition, antibody-dependent enhancement was not observed even when infected mice were treated with SC31 at sub-therapeutic doses. In SARS-CoV-2-infected hamsters, SC31 treatment significantly prevented weight loss, reduced viral loads, and attenuated the histopathology of the lungs. In rhesus macaques, the therapeutic potential of SC31 was evidenced through the reduction of viral loads in both upper and lower respiratory tracts to undetectable levels. Together, the results of our preclinical studies demonstrated the therapeutic efficacy of SC31 in three different models and its potential as a COVID-19 therapeutic candidate.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , COVID-19/terapia , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/genética , Animais , Anticorpos Neutralizantes/metabolismo , COVID-19/imunologia , COVID-19/virologia , Quimiocinas/sangue , Quimiocinas/genética , Chlorocebus aethiops , Convalescença , Cricetinae , Citocinas/sangue , Citocinas/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Macaca mulatta , Masculino , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Carga Viral
16.
Cell ; 184(12): 3192-3204.e16, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33974910

RESUMO

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by binding of the viral Spike protein to host receptor angiotensin-converting enzyme 2 (ACE2), followed by fusion of viral and host membranes. Although antibodies that block this interaction are in emergency use as early coronavirus disease 2019 (COVID-19) therapies, the precise determinants of neutralization potency remain unknown. We discovered a series of antibodies that potently block ACE2 binding but exhibit divergent neutralization efficacy against the live virus. Strikingly, these neutralizing antibodies can inhibit or enhance Spike-mediated membrane fusion and formation of syncytia, which are associated with chronic tissue damage in individuals with COVID-19. As revealed by cryoelectron microscopy, multiple structures of Spike-antibody complexes have distinct binding modes that not only block ACE2 binding but also alter the Spike protein conformational cycle triggered by ACE2 binding. We show that stabilization of different Spike conformations leads to modulation of Spike-mediated membrane fusion with profound implications for COVID-19 pathology and immunity.


Assuntos
Anticorpos Neutralizantes/química , Células Gigantes/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/metabolismo , Sítios de Ligação , Células CHO , COVID-19/patologia , COVID-19/virologia , Cricetinae , Cricetulus , Microscopia Crioeletrônica , Células Gigantes/citologia , Humanos , Fusão de Membrana , Biblioteca de Peptídeos , Ligação Proteica , Domínios Proteicos , Estrutura Quaternária de Proteína , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
17.
Bioeng Transl Med ; 6(1): e10196, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33532594

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to multiple drug repurposing clinical trials that have yielded largely uncertain outcomes. To overcome this challenge, we used IDentif.AI, a platform that pairs experimental validation with artificial intelligence (AI) and digital drug development to rapidly pinpoint unpredictable drug interactions and optimize infectious disease combination therapy design with clinically relevant dosages. IDentif.AI was paired with a 12-drug candidate therapy set representing over 530,000 drug combinations against the SARS-CoV-2 live virus collected from a patient sample. IDentif.AI pinpointed the optimal combination as remdesivir, ritonavir, and lopinavir, which was experimentally validated to mediate a 6.5-fold enhanced efficacy over remdesivir alone. Additionally, it showed hydroxychloroquine and azithromycin to be relatively ineffective. The study was completed within 2 weeks, with a three-order of magnitude reduction in the number of tests needed. IDentif.AI independently mirrored clinical trial outcomes to date without any data from these trials. The robustness of this digital drug development approach paired with in vitro experimentation and AI-driven optimization suggests that IDentif.AI may be clinically actionable toward current and future outbreaks.

18.
Int J Pharm ; 588: 119786, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32822783

RESUMO

We report the pharmaceutical stability of trastuzumab stored for a short time (12 h) at room temperature (RT; 20-25 °C) compared to trastuzumab stored at 2-8 °C. The physicochemical properties were evaluated by UV-visible and FTIR spectroscopy, SDS-PAGE and size-exclusion HPLC (SE-HPLC). Trastuzumab was reacted with benzylisothiocyanate diethylenetriaminepentaacetic acid (BzDTPA) to complex 111In. The HER2-binding affinity of 111In-BzDTPA-trastuzumab synthesised from trastuzumab stored at RT or at 2-8 °C was measured using HER2-positive SK-Br-3 human breast cancer (BC) cells. The tumour and normal tissue uptake of 111In-BzDTPA-trastuzumab was studied by microSPECT/CT imaging and biodistribution studies in CD1 athymic mice with s.c. HER2-positive SK-Ov-3 human ovarian cancer xenografts. There were no differences in λmax or molar absorptivity (ε) values in the UV-visible spectra of trastuzumab stored at RT or at 2-8 °C. FTIR spectroscopy suggested no differences in secondary structure. SDS-PAGE revealed protein bands corresponding to the expected molecular weights. SE-HPLC showed identical properties for trastuzumab stored at RT or at 2-8 °C. The dissociation constant (Kd) for binding of 111In-BzDTPA-trastuzumab to HER2 on SK-Br-3 cells (2.2-4.4 nM) was not significantly different when the radioimmunoconjugates were synthesised from trastuzumab stored at RT or at 2-8 °C. MicroSPECT/CT demonstrated high uptake in SK-Ov-3 tumours in mice that was not significantly different using trastuzumab stored at RT or at 2-8 °C (33.7 ± 8.8% vs. 22.2 ± 8.1% i.d./g, respectively; P = 0.36). There were no significant differences in normal tissue uptake or in tumour/normal tissue (T/NT) ratios. We conclude that short-term storage of trastuzumab at RT for 12 h did not affect the physicochemical or biological properties of the drug.


Assuntos
Neoplasias da Mama , Neoplasias , Preparações Farmacêuticas , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Receptor ErbB-2/metabolismo , Temperatura , Distribuição Tecidual , Tomografia Computadorizada por Raios X , Trastuzumab
19.
Mon Not R Astron Soc ; 496(2): 2000-2020, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32624624

RESUMO

We introduce a new discrete-ordinate scheme for solving the general relativistic (GR) Boltzmann transport equation in the context of core-collapse supernovae (CCSNe). Our algorithm avoids the need to spell out the complicated advection terms in energy and angle that arise when the transport equation is formulated in spherical polar coordinates, in the comoving frame, or in a GR space-time. We instead approach the problem by calculating the advection of neutrinos across momentum space using an intuitive particle-like approach that has excellent conservation properties and fully accounts for Lorentz boosts, GR effects, and grid geometry terms. In order to avoid the need for a global implicit solution, time integration is performed using a locally implicit Lax-Wendroff scheme that correctly reproduces the diffusion limit. This will facilitate the use of our method on massively parallel distributed-memory architectures. We have verified the accuracy and stability of our scheme with a suite of test problems in spherical symmetry and axisymmetry. To demonstrate that the new algorithm works stably in CCSN simulations, we have coupled it to the GR hydrodynamics code coconut and present a first demonstration run of a [Formula: see text] progenitor with a reduced set of neutrino opacities.

20.
Nucl Med Biol ; 84-85: 46-54, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32062317

RESUMO

INTRODUCTION: Our objective was to determine the feasibility of extending our previously reported PET imaging study of pancreatic cancer (PnCa) with [64Cu]Cu-NOTA-panitumumab F(ab')2 to radioimmunotherapy (RIT) by exploiting the ß-particle and Auger electron emissions of 64Cu (PET theranostic concept). To enhance the effectiveness of [64Cu]Cu-NOTA-panitumumab F(ab')2, we further combined RIT with radiosensitizing gemcitabine (GEM) and the poly(ADP)ribose polymerase inhibitor (PARPi), rucaparib. METHODS: Normal tissue toxicity was assessed in non-tumor-bearing NOD-scid mice injected i.v. with [64Cu]Cu-NOTA-panitumumab F(ab')2 (1.85-9.25 MBq; 10 µg) or [64Cu]Cu-NOTA-anti-mouse EGFR Ab30 F(ab')2 (12.95 MBq). Body weight was monitored, and hematopoietic (CBC), liver (ALT) and kidney [creatinine (SCr)] toxicity were assessed. RIT studies were performed in NOD-scid mice with s.c. OCIP23 human PnCa patient-derived xenografts (PDX) administered [64Cu]Cu-NOTA-panitumumab F(ab')2 (3.7 MBq; 10 µg), unlabeled panitumumab F(ab')2 (10 µg) or normal saline every two weeks. Subsequent studies evaluated RIT with [64Cu]Cu-NOTA-panitumumab F(ab')2 (12.95 MBq; 10 µg) administered alone or combined with GEM and the PARPi, rucaparib administered on a 14-day treatment cycle for up to 6 cycles in NOD-scid mice with s.c. PANC-1 human PnCa xenografts. The radiation absorbed dose in PANC-1 tumors and normal organs in mice after a single i.v. injection of [64Cu]Cu-NOTA-panitumumab F(ab')2 (12.95 MBq; 10 µg) was estimated based on previously reported biodistribution studies of [64Cu]Cu-NOTA-panitumumab F(ab')2. RESULTS: No normal tissue toxicity was observed in non-tumor-bearing NOD-scid mice administered up to 3.7 MBq (10 µg) of [64Cu]Cu-NOTA-panitumumab F(ab')2 but slightly increased ALT was noted at 9.25 MBq. Administration of [64Cu]Cu-NOTA-anti-mouse EGFR Ab30 F(ab')2 (12.95 MBq; 10 µg) caused some hematopoietic toxicity but no increase in ALT or SCr or decreased body weight. A slight tumor growth delay and increased survival was noted in NOD-scid mice with s.c. OCIP23 PDX treated with [64Cu]Cu-NOTA-panitumumab F(ab')2 (3.7 MBq; 10 µg) or unlabeled panitumumab F(ab')2 (10 µg) compared to normal saline treated mice. RIT with [64Cu]Cu-NOTA-panitumumab F(ab')2 (12.95 MBq; 10 µg) combined with GEM + PARPi for up to 6 cycles was most effective for the treatment of PANC-1 tumors. Tumor doubling time increased to 13.3 ± 0.9 days vs. 7.8 ± 3.7 days for RIT alone and 9.3 ± 2.2 days for normal saline treatment. Median survival was significantly longer (P < 0.05) than in mice treated with normal saline (35 days) for RIT + GEM + PARPi (71 days), GEM + PARPi (44 days) and RIT + GEM (43 days) but not for RIT alone (25 days). RIT + GEM + PARPi provided a longer median survival than RIT (P < 0.01), GEM + PARPi (P = 0.01) but not RIT + GEM (P = 0.23). Nonetheless, PANC-1 tumors grew exponentially in all treatment groups. The absorbed dose in PANC-1 tumors after a single i.v. injection of [64Cu]Cu-NOTA-panitumumab F(ab')2 (12.85 MBq; 10 µg) was 0.8 Gy, while the dose in normal organs ranged from 0.6-1.2 Gy. CONCLUSIONS: We conclude that RIT with [64Cu]Cu-NOTA-panitumumab F(ab')2 did not cause significant normal tissue toxicity but was not effective when administered alone for treatment of PnCa xenografts in NOD-scid mice. Combining RIT with GEM and the PARPi, rucaparib enhanced its effectiveness but tumors continued to grow exponentially. Our results suggest that 64Cu is not feasible for RIT of PnCa due to low tumor absorbed doses. 177Lu which has a higher abundance of moderate energy ß-particle emissions may be more effective than 64Cu. The hematopoietic toxicity of [64Cu]Cu-NOTA-anti-mouse EGFR Ab30 F(ab')2 may be mediated by binding to mouse EGFR expressed on some hematopoietic stem cells. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: Direct extension of PET with 64Cu(Cu)-NOTA-panitumumab F(ab')2 to RIT exploiting the ß-particle and Auger electron emissions of 64Cu is not feasible. Theranostic approaches that combine PET with RIT employing 177Lu may be more promising and should be explored.


Assuntos
Desoxicitidina/análogos & derivados , Compostos Heterocíclicos com 1 Anel/química , Indóis/farmacologia , Neoplasias Pancreáticas/radioterapia , Panitumumabe/farmacologia , Radiossensibilizantes/farmacologia , Radioimunoterapia/métodos , Animais , Peso Corporal/efeitos da radiação , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Terapia Combinada , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Humanos , Indóis/uso terapêutico , Rim/efeitos da radiação , Fígado/efeitos da radiação , Camundongos , Neoplasias Pancreáticas/patologia , Panitumumabe/química , Panitumumabe/uso terapêutico , Radiossensibilizantes/uso terapêutico , Radioimunoterapia/efeitos adversos , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...