Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 91: 104570, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37068347

RESUMO

BACKGROUND: The Asian lineage Zika virus (ZIKV) emerged as a public health emergency in 2016 causing severe neurological pathologies with no apparent historical correlate to the mild, disease-causing innocuous member of the mosquito-borne flavivirus genus that was discovered in Africa in 1947. Replication error rate of RNA viruses combined with viral protein/RNA structural plasticity can lead to evolution of virus-induced pathogenicity that is critical to identify and validate. METHODS: Infection studies in cells and A129 interferon alpha/beta receptor deficient mice with ZIKV French Polynesian H/PF/2013 clinical isolate, plaque-purified isogenic clone derivatives as well as infectious cDNA clone derived wild-type and site-specific mutant viruses, were employed together with Next-Generation Sequencing (NGS) to pin-point the contributions of specific viral variants in neurovirulence recapitulated in our ZIKV mouse model. FINDINGS: NGS analysis of the low-passage inoculum virus as well as mouse serum, brain and testis derived virus, revealed specific enrichment in the mouse brain that were not found in the other tissues. Specifically, non-structural (NS) protein 2A variant at position 117 along with changes in NS1 and NS4B were uniquely associated with the mouse brain isolate. Mutational analysis of these variants in cDNA infectious clones identified the NS2A A117V as the lethal pathogenic determinant with potential epistatic contribution of NS1 and NS4B variants in ZIKV brain penetrance. INTERPRETATION: Our findings confirm that viral subpopulations drive ZIKV neuropathogenicity and identify specific sequence variants that expand in the mouse brain that associates with this phenotype which can serve as predictors of severe epidemics. FUNDING: Duke-NUS Khoo Post-doctoral Fellowship Award 2020 (KWKC) and National Medical Research Council of Singapore grants MOH-000524 (OFIRG) (SW) and MOH-OFIRG20nov-0002 (SGV).


Assuntos
Infecção por Zika virus , Zika virus , Masculino , Chlorocebus aethiops , Animais , Camundongos , Zika virus/genética , Células Vero , DNA Complementar/genética , DNA Complementar/metabolismo , Replicação Viral , RNA Viral/genética , RNA Viral/metabolismo
2.
Virology ; 583: 1-13, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060797

RESUMO

Type I interferon (IFN-I) evasion by Dengue virus (DENV) is key in DENV pathogenesis. The non-structural protein 5 (NS5) antagonizes IFN-I response through the degradation of the signal transducer and activator of transcription 2 (STAT2). We developed a K562 cell-based platform, for high throughput screening of compounds potentially counteracting the NS5-mediated antagonism of IFN-I signaling. Upon a screening with a library of 1220 approved drugs, 3 compounds previously linked to DENV inhibition (Apigenin, Chrysin, and Luteolin) were identified. Luteolin and Apigenin determined a significant inhibition of DENV2 replication in Huh7 cells and the restoration of STAT2 phosphorylation in both cell systems. Apigenin and Luteolin were able to stimulate STAT2 even in the absence of infection. Despite the "promiscuous" and "pan-assay-interfering" nature of Luteolin, Apigenin promotes STAT2 Tyr 689 phosphorylation and activation, highlighting the importance of screening for compounds able to interact with host factors, to counteract viral proteins capable of dampening innate immune responses.


Assuntos
Vírus da Dengue , Apigenina/farmacologia , Vírus da Dengue/fisiologia , Luteolina/farmacologia , Transdução de Sinais , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Humanos
3.
Eur J Med Chem ; 252: 115283, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965228

RESUMO

Dengue virus (DENV), a mosquito-borne flavivirus, continues to be a major public health threat in many countries and no approved antiviral therapeutics are available yet. In this work, we designed and synthesized a series of sulfonyl anthranilic acid (SAA) derivatives using a ligand-based scaffold morphing approach of the 2,1-benzothiazine 2,2-dioxide core, previously used by us to develop DENV polymerase inhibitors resulting devoid of any cell-based antiviral activity. Several derivatives based on the new SAA chemotype exhibited potent inhibition against DENV infection in the cell-based assay but did not inhibit DENV NS5 polymerase activity in the in vitro de novo initiation and elongation assays. Notably, best compounds 26 and 39 showed EC50 values in the range of 0.54-1.36 µM against cells infected with the four dengue serotypes (DENV-1-4). Time-of-drug-addition assay revealed that analogue 26 is a post-entry replication inhibitor that appears to be specific for cells of primate origin, implicating a host target with a high barrier to resistance. In conclusion, SAA derivatives offer a valuable starting point for developing effective Dengue antiviral therapeutics.


Assuntos
Vírus da Dengue , Dengue , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Sorogrupo , Replicação Viral
4.
Antiviral Res ; 210: 105517, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592668

RESUMO

Flaviviruses are vector-borne pathogens capable of causing devastating human diseases. The re-emergence of Zika in 2016 notoriously led to a widescale epidemic in the Americas. New daunting evidence suggests that a single mutation in Zika virus genome may increase transmission and pathogenesis, further highlighting the need to be prepared for flavivirus outbreaks. Dengue, in particular infects about 400 million people each year, leading to reoccurring local outbreaks. Public health efforts to mitigate flavivirus transmission is largely dependent on vector control strategies, as only a limited number of flavivirus vaccines have been developed thus far. There are currently no commercially available antivirals for flaviviruses, leaving supportive care as the primary treatment option. In this review, we will briefly paint a broad picture of the flavivirus landscape in terms of therapeutics, with particular focus on viral targets, promising novel compounds entering the drug discovery pipeline, as well as model systems for evaluating drug efficacy.


Assuntos
Infecções por Flavivirus , Flavivirus , Vacinas Virais , Infecção por Zika virus , Zika virus , Humanos , Flavivirus/genética , Zika virus/genética , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/prevenção & controle
5.
EBioMedicine ; 77: 103930, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35290828

RESUMO

BACKGROUND: Congenital disorders associated with prenatal vertical transmission of Zika virus (ZIKV) is well established since the 2016 outbreak in the Americas. However, despite clinical reports of similar mode of transmission for other flaviviruses such as dengue virus (DENV), the phenomenon has not been experimentally explored. METHODS: Pregnant AG129 mice were infected with DENV1 in the presence or absence of enhancing antibodies at different gestational time points. ZIKV was used for comparison. We quantified viral load in fetus and placentas and performed comprehensive gene expression profiling in the maternal (decidua) and fetal portion of placenta separately. FINDINGS: We demonstrate in a laboratory experimental setting that DENV can be transmitted vertically in a gestation stage-dependent manner similar to ZIKV, and this incidence drastically increases in the presence of enhancing antibodies. Interestingly, a high rate of DENV fetal infection occurs even though the placental viral load is significantly lower than that found in ZIKV-infected dams. Comprehensive gene expression profiling revealed DENV infection modulates a variety of inflammation-associated genes comparable to ZIKV in decidua and fetal placenta in early pregnancy. INTERPRETATION: Our findings suggest that the virus-induced modulation of host gene expression may facilitate DENV to cross the placental barrier in spite of lower viral burden compared to ZIKV. This mouse model may serve to identify the host determinants required for the vertical transmission of flaviviruses and develop appropriate countermeasures. FUNDING: National Medical Research Council/Open Fund Individual Research Grant MOH-000524 (SW), MOH-000086 and OFIRG20nov-0017 (SGV).


Assuntos
Vírus da Dengue , Infecção por Zika virus , Zika virus , Animais , Anticorpos Antivirais , Feminino , Humanos , Camundongos , Placenta , Gravidez , Zika virus/genética
6.
RNA ; 28(2): 177-193, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34759006

RESUMO

The commitment to replicate the RNA genome of flaviviruses without a primer involves RNA-protein interactions that have been shown to include the recognition of the stem-loop A (SLA) in the 5' untranslated region (UTR) by the nonstructural protein NS5. We show that DENV2 NS5 arginine 888, located within the carboxy-terminal 18 residues, is completely conserved in all flaviviruses and interacts specifically with the top-loop of 3'SL in the 3'UTR which contains the pentanucleotide 5'-CACAG-3' previously shown to be critical for flavivirus RNA replication. We present virological and biochemical data showing the importance of this Arg 888 in virus viability and de novo initiation of RNA polymerase activity in vitro. Based on our binding studies, we hypothesize that ternary complex formation of NS5 with 3'SL, followed by dimerization, leads to the formation of the de novo initiation complex that could be regulated by the reversible zipping and unzipping of cis-acting RNA elements.


Assuntos
Vírus da Dengue/fisiologia , RNA/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Regiões 3' não Traduzidas , Animais , Arginina/química , Linhagem Celular , Sequência Conservada , Cricetinae , Cricetulus , RNA Polimerases Dirigidas por DNA/metabolismo , Vírus da Dengue/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
7.
Antiviral Res ; 195: 105194, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34699863

RESUMO

The flavivirus NS5 protein contains an N-terminal methyl-transferase (MTase) connected through a flexible linker with a C-terminal RNA-dependent RNA-polymerase (RdRp) domain, that work cooperatively to replicate and methylate the viral genome. In this study we probed the importance of an evolutionary-conserved hydrophobic residue (Val266) located at the start of the ten-residue interdomain linker of Zika virus (ZIKV) NS5. In flavivirus NS5 crystal structures, the start of the linker forms a 310 helix when NS5 adopts a compact conformation, but becomes disordered or extended in open conformations. Using reverse genetics system, we either introduced rigidity in the linker through mutation to a proline or flexibility through a glycine mutation at position 266. ZIKV NS5 Val 266 to Pro mutation was lethal for viral RNA replication while the Gly mutation was severely attenuated. Serial passaging of cell culture supernatant derived from C6/36 mosquito cells transfected with mutant ZIKV RNA showed that the attenuation can be rescued. Next generation deep sequencing revealed four single nucleotide polymorphisms that occur with an allele frequency >98%. The single non-synonymous NS5 mutation Glu419 to Lys is adjacent to RdRp motif G at the tip of the fingers subdomain, while the remaining three are synonymous variants at nucleotide positions 1403, 4403 and 6653 in the genome. Reverse engineering the changes into the ZIKV NS5/Val266Gly background followed by serial passaging revealed that residue 266 is under strong positive selection to revert back to Val. The interaction of the specific conformation of the NS5 linker with Val at position 266 and the RNA binding motif G region may present a potential strategy for allosteric antiviral drug development.


Assuntos
Antivirais/química , Metiltransferases/química , Proteínas não Estruturais Virais/química , Replicação Viral/efeitos dos fármacos , Zika virus/enzimologia , Sítio Alostérico , Animais , Linhagem Celular , Cricetinae , Cristalografia por Raios X , Desenho de Fármacos , Metiltransferases/biossíntese , Modelos Moleculares , Ligação Proteica , RNA Polimerase Dependente de RNA , Proteínas não Estruturais Virais/biossíntese , Infecção por Zika virus
8.
Eur J Med Chem ; 224: 113695, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34298282

RESUMO

The flavivirus genus of the Flaviviridae family comprises Dengue, Zika and West-Nile viruses which constitute unmet medical needs as neither appropriate antivirals nor safe vaccines are available. The dengue NS2BNS3 protease is one of the most promising validated targets for developing a dengue treatment however reported protease inhibitors suffer from toxicity and cellular inefficacy. Here we report SAR on our previously reported Zika-active carbazole scaffold, culminating prodrug compound SP-471P (EC50 1.10 µM, CC50 > 100 µM) that generates SP-471; one of the most potent, non-cytotoxic and cell-active protease inhibitors described in the dengue literature. In cell-based assays, SP-471P leads to inhibition of viral RNA replication and complete abolishment of infective viral particle production even when administered 6 h post-infection. Mechanistically, SP-471 appears to inhibit both normal intermolecular protease processes and intramolecular cleavage events at the NS2BNS3 junction, as well as at NS3 internal sites, all critical for virus replication. These render SP-471 a unique to date multimodal inhibitor of the dengue protease.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Oximas/farmacologia , Peptídeo Hidrolases/metabolismo , Pró-Fármacos/farmacologia , Inibidores de Proteases/farmacologia , Antivirais/síntese química , Antivirais/química , Vírus da Dengue/enzimologia , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oximas/síntese química , Oximas/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Relação Estrutura-Atividade
9.
Antiviral Res ; 185: 104991, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33279522

RESUMO

In mouse models of dengue virus (DENV) infection, 18F-FDG PET is able to sensitively detect tissue-specific sites of inflammation and disease activity, as well as track therapeutic response to anti- DENV agents. However, the use of 18F-FDG PET to study the pathogenesis of inflammation and disease activity in DENV infection in humans, has not been clinically validated. Here we report the 18F-FDG PET imaging results of two patients during the febrile phase of acute DENV infection, paired with serial serum viral load, NS1 and proinflammatory cytokine measurements. Our findings demonstrate that 18F-FDG PET is able to sensitively detect and quantify organ-specific inflammation in the lymph nodes and spleen, in classic acute dengue fever. This raises the potential for 18F-FDG PET to be used as a research tool that may provide further insights into disease pathogenesis.


Assuntos
Dengue/sangue , Dengue/fisiopatologia , Fluordesoxiglucose F18/metabolismo , Inflamação/fisiopatologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Doença Aguda , Adulto , Convalescença , Citocinas/análise , Dengue/virologia , Feminino , Humanos , Inflamação/imunologia , Linfonodos/patologia , Masculino , Pessoa de Meia-Idade , Baço/patologia , Carga Viral
10.
J Gen Virol ; 101(9): 941-953, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32589122

RESUMO

The dengue virus (DENV) replication complex is made up of its non-structural (NS) proteins and yet-to-be identified host proteins, but the molecular interactions between these proteins are not fully elucidated. In this work, we sought to uncover the interactions between DENV NS1 and its fellow NS proteins using a yeast two-hybrid (Y2H) approach, and found that domain II of NS1 binds to an N-terminal cytoplasmic fragment of NS4A. Mutations in amino acid residues 41 and 43 in this cytoplasmic region of NS4A disrupted the interaction between NS1 and the NS4A-2K-4B precursor protein. When the NS4A Y41F mutation was introduced into the context of the virus via a DENV2 infectious clone, this mutant virus exhibited impaired viral fitness and decreased infectious virus production. The NS4A Y41F mutant virus triggered a significantly muted transcriptional activation of interferon-stimulated genes compared to wild-type virus that is independent of NS4A's ability to antagonize type I interferon signalling. Taken together, we have identified a link between DENV NS1 and the cytoplasmic domain in NS4A that is important for its cellular and viral functions.


Assuntos
Vírus da Dengue/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Vírus da Dengue/fisiologia , Aptidão Genética , Humanos , Interferon Tipo I/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Técnicas do Sistema de Duplo-Híbrido , Proteínas não Estruturais Virais/química , Vírion/metabolismo , Replicação Viral
11.
Cells ; 8(12)2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779251

RESUMO

The Zika virus (ZIKV) non-structural protein 5 (NS5) plays multiple viral and cellular roles during infection, with its primary role in virus RNA replication taking place in the cytoplasm. However, immunofluorescence assay studies have detected the presence of ZIKV NS5 in unique spherical shell-like structures in the nuclei of infected cells, suggesting potentially important cellular roles of ZIKV NS5 in the nucleus. Hence ZIKV NS5's subcellular distribution and localization must be tightly regulated during ZIKV infection. Both ZIKV NS5 expression or ZIKV infection antagonizes type I interferon signaling, and induces a pro-inflammatory transcriptional response in a cell type-specific manner, but the mechanisms involved and the role of nuclear ZIKV NS5 in these cellular functions has not been elucidated. Intriguingly, these cells originate from the brain and placenta, which are also organs that exhibit a pro-inflammatory signature and are known sites of pathogenesis during ZIKV infection in animal models and humans. Here, we discuss the regulation of the subcellular localization of the ZIKV NS5 protein, and its putative role in the induction of an inflammatory response and the occurrence of pathology in specific organs during ZIKV infection.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia , Zika virus/fisiologia , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Humanos , Imunidade Inata , Espaço Intracelular/metabolismo , Conformação Proteica , Transporte Proteico , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/química
12.
Sci Transl Med ; 11(498)2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243154

RESUMO

Dengue viruses cause severe and sudden human epidemics worldwide. The secreted form of the nonstructural protein 1 (sNS1) of dengue virus causes vascular leakage, a hallmark of severe dengue disease. Here, we reverse engineered the T164S mutation of NS1, associated with the severity of dengue epidemics in the Americas, into a dengue virus serotype 2 mildly infectious strain. The T164S mutant virus decreased infectious virus production and increased sNS1 production in mammalian cell lines and human peripheral blood mononuclear cells (PBMCs) without affecting viral RNA replication. Gene expression profiling of 268 inflammation-associated human genes revealed up-regulation of genes induced in response to vascular leakage. Infection of the mosquito vector Aedes aegypti with the T164S mutant virus resulted in increased viral load in the mosquito midgut and higher sNS1 production compared to wild-type virus infection. Infection of type 1 and 2 interferon receptor-deficient AG129 mice with the T164S mutant virus resulted in severe disease coupled with increased complement activation, tissue inflammation, and more rapid mortality compared to AG129 mice infected with wild-type virus. Molecular dynamics simulations predicted that mutant sNS1 formed stable dimers similar to the wild-type protein, whereas the hexameric mutant sNS1 was predicted to be unstable. Immunoaffinity-purified sNS1 from T164S mutant virus-infected mammalian cells was associated with different lipid classes compared to wild-type sNS1. Treatment of human PBMCs with sNS1 purified from T164S mutant virus resulted in a twofold higher production of proinflammatory cytokines, suggesting a mechanism for how mutant sNS1 may cause more severe dengue disease.


Assuntos
Vírus da Dengue/genética , Dengue/patologia , Dengue/virologia , Mutação/genética , Índice de Gravidade de Doença , Proteínas não Estruturais Virais/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Sequência Conservada , Culicidae/virologia , Regulação da Expressão Gênica , Inflamação/genética , Cinética , Leucócitos Mononucleares/virologia , Camundongos , Modelos Moleculares , Proteínas Mutantes/química , Filogenia , Multimerização Proteica , Estabilidade Proteica , Proteínas não Estruturais Virais/química , Replicação Viral
13.
FEBS Lett ; 593(12): 1272-1291, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31090058

RESUMO

Zika virus (ZIKV) relies on its nonstructural protein 5 (NS5) for capping and synthesis of the viral RNA. Recent small-angle X-ray scattering (SAXS) data of recombinant ZIKV NS5 protein showed that it is dimeric in solution. Here, we present insights into the critical residues responsible for its dimer formation. SAXS studies of the engineered ZIKV NS5 mutants revealed that R681A mutation on NS5 (NS5R681A ) disrupts the dimer formation and affects its RNA-dependent RNA polymerase activity as well as the subcellular localization of NS5R681A in mammalian cells. The critical residues involved in the dimer arrangement of ZIKV NS5 are discussed, and the data provide further insights into the diversity of flaviviral NS5 proteins in terms of their propensity for oligomerization.


Assuntos
Proteínas não Estruturais Virais/metabolismo , Zika virus/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Dimerização , Humanos , Mutação , Conformação Proteica , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Difração de Raios X
14.
Antiviral Res ; 167: 104-109, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31051186

RESUMO

Zika virus (ZIKV) infection during pregnancy has been associated with adverse outcomes and birth defects such as microcephaly in newborn children. Congenital malformations associated with ZIKV are believed to occur via direct infection of the fetus. Unfortunately, there are no licensed therapeutic or preventative tools to block maternal-fetal transmission of ZIKV. In this study, we developed a mouse model of ZIKV infection that specifically establishes vertical maternal-fetal transmission of ZIKV in 40-60% of fetuses when the dams acquire ZIKV infection during pregnancy. This mouse model somewhat mirrors the experience in humans at the peak of the epidemic in the Americas. Using this model, we demonstrate that a well-documented directly acting antiviral (DAA) compound that targets flaviviral RNA synthesis can completely prevent fetal infection when the treatment is started at the time of infection. Notably, we show that the treatment commenced at the time of peak viremia is still able to reduce the risk of fetal infection concomitant with significant reduction in placental viral load. Our results show for the first time the potential for clinical development of antiviral drugs for preventing vertical maternal-fetal transmission of ZIKV.


Assuntos
Adenosina/análogos & derivados , Antivirais/uso terapêutico , Transmissão Vertical de Doenças Infecciosas , Malformações do Sistema Nervoso/virologia , Infecção por Zika virus , Adenosina/uso terapêutico , Animais , Modelos Animais de Doenças , Feminino , Feto/anormalidades , Feto/virologia , Humanos , Camundongos , Microcefalia/virologia , Malformações do Sistema Nervoso/tratamento farmacológico , Malformações do Sistema Nervoso/prevenção & controle , Gravidez , Complicações Infecciosas na Gravidez , Carga Viral/efeitos dos fármacos , Zika virus/isolamento & purificação , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/transmissão
15.
ACS Infect Dis ; 5(6): 932-948, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-30848123

RESUMO

The Zika virus (ZIKV) epidemic in the Americas was alarming because of its link with microcephaly in neonates and Guillain-Barré syndrome in adults. The unusual pathologies induced by ZIKV infection and the knowledge that the flaviviral nonstructural protein 5 (NS5), the most conserved protein in the flavivirus proteome, can modulate the host immune response during ZIKV infection prompted us to investigate the subcellular localization of NS5 during ZIKV infection and explore its functional significance. A monopartite nuclear localization signal (NLS) sequence within ZIKV NS5 was predicted by the cNLS Mapper program, and we observed localization of ZIKV NS5 in the nucleus of infected cells by immunostaining with specific antibodies. Strikingly, ZIKV NS5 forms spherical shell-like nuclear bodies that exclude DNA. The putative monopartite NLS 390KRPR393 is necessary to direct FLAG-tagged NS5 to the nucleus as the NS5 390ARPA393 mutant protein accumulates in the cytoplasm. Furthermore, coimmunostaining experiments reveal that NS5 localizes with and sequesters importin-α, but not importin-ß, in the observed nuclear bodies during virus infection. Structural and biochemical data demonstrate binding of ZIKV NS5 with importin-α and reveal important binding determinants required for their interaction and formation of complexes that give rise to the supramolecular nuclear bodies. Significantly, we demonstrate a neuronal-specific activation of the host immune response to ZIKV infection and a possible role of ZIKV NS5's nuclear localization toward this activation. This suggests that ZIKV pathogenesis may arise from a tissue-specific host response to ZIKV infection.


Assuntos
Interações entre Hospedeiro e Microrganismos/imunologia , Neurônios/imunologia , Neurônios/virologia , Proteínas não Estruturais Virais/metabolismo , Zika virus/imunologia , alfa Carioferinas/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Células HEK293 , Humanos , Inflamação/genética , Masculino , Camundongos , Ligação Proteica , Proteínas não Estruturais Virais/genética , Replicação Viral , Zika virus/genética , Zika virus/fisiologia
16.
J Infect Dis ; 219(2): 223-233, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30085051

RESUMO

Preexisting immunity to Zika virus (ZIKV) or dengue virus (DENV) may alter the course of their infection, and here we use robust mouse models to examine pathological outcomes following passive immunization, sequential cross-infection, or vaccination with inactivated virus. DENV infection was enhanced (through antibody-dependent enhancement [ADE]) or was suppressed by both DENV and ZIKV immunity. Notably, inactivated ZIKV vaccination enhanced dengue disease severity, although it was highly protective against ZIKV infection. On the other hand, ADE was not observed upon ZIKV infection in mice that were passively immunized or preinfected with DENV. Surprisingly, however, we found that vaccination with inactivated DENV enhanced ZIKV infection, mainly in the mesenteric lymph node, indicating the potential for DENV immunity to cause ADE in vivo. Collectively, our data call for greater attention to detail in the design of ZIKV or DENV vaccines.


Assuntos
Reações Cruzadas/imunologia , Vírus da Dengue/imunologia , Vírus da Dengue/patogenicidade , Dengue/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Zika virus/patogenicidade , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Facilitadores/imunologia , Linhagem Celular , Dengue/sangue , Dengue/patologia , Vacinas contra Dengue , Vírus da Dengue/genética , Modelos Animais de Doenças , Genoma Viral , Humanos , Imunidade , Imunização , Linfonodos , Camundongos , Células THP-1 , Vacinação , Inativação de Vírus , Zika virus/genética , Infecção por Zika virus/sangue , Infecção por Zika virus/patologia
17.
Antiviral Res ; 154: 87-96, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29665375

RESUMO

We previously showed that luteolin, a well-known plant-derived component found in the "heat clearing" class of Traditional Chinese Medicine (TCM) herbs, is an uncompetitive inhibitor (Ki 58.6 µM) of the host proprotein convertase furin, an endoprotease that is required for maturation of flaviviruses in the trans-Golgi compartment. Luteolin also weakly inhibited recombinant dengue virus NS2B/NS3 protease (Ki 140.36 µM) non-competitively. In order to further explore the mechanism of inhibition we isolated resistant mutants by continuous passaging of DENV2 in the presence of increasing concentrations of luteolin. Nucleotide sequence analysis of the luteolin-resistant escape mutants revealed nucleotide changes that lead to amino acid substitutions in the prM (T79R) and NS2B (I114M) genes. These mutations were introduced into a DENV2 infectious clone and tested for replication in Huh-7 cells. Interestingly we found that the replication kinetics of prM T19R-NS2B I114M double-mutant (DM) was similar to wild-type virus (WT). On the other hand the prM T79R single mutant (SM1) was attenuated and the NS2B I114M single mutant (SM2) showed enhanced replication. Time of drug addition assay with luteolin showed that the mutant viruses were able to produce more mature virions than WT in the order DM > SM2>SM1>WT. Exogenous addition of furin to purified immature WT or mutant viruses revealed that luteolin blocked the prM cleavage of WT and SM2 at a similar level. On the other hand the SM1 immature virus showed some cleavage while the DM immature virus revealed efficient furin cleavage of prM even in the presence of 50 µM luteolin. Our findings suggest that luteolin inhibition of furin may occur at host/pathogen interface that permits the virus to escape the suppression by mutating key residue that may lead to an altered interface.


Assuntos
Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/genética , Luteolina/farmacologia , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética , Montagem de Vírus/efeitos dos fármacos , Substituição de Aminoácidos , Linhagem Celular Tumoral , Dengue/virologia , Farmacorresistência Viral , Furina/farmacologia , Humanos , Mutação , Nucleotídeos/genética
18.
J Virol ; 92(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321322

RESUMO

A primary question in dengue virus (DENV) biology is the molecular strategy for recruitment of host cell protein synthesis machinery. Here, we combined cell fractionation, ribosome profiling, and transcriptome sequencing (RNA-seq) to investigate the subcellular organization of viral genome translation and replication as well as host cell translation and its response to DENV infection. We report that throughout the viral life cycle, DENV plus- and minus-strand RNAs were highly partitioned to the endoplasmic reticulum (ER), identifying the ER as the primary site of DENV translation. DENV infection was accompanied by an ER compartment-specific remodeling of translation, where ER translation capacity was subverted from host transcripts to DENV plus-strand RNA, particularly at late stages of infection. Remarkably, translation levels and patterns in the cytosol compartment were only modestly affected throughout the experimental time course of infection. Comparisons of ribosome footprinting densities of the DENV plus-strand RNA and host mRNAs indicated that DENV plus-strand RNA was only sparsely loaded with ribosomes. Combined, these observations suggest a mechanism where ER-localized translation and translational control mechanisms, likely cis encoded, are used to repurpose the ER for DENV virion production. Consistent with this view, we found ER-linked cellular stress response pathways commonly associated with viral infection, namely, the interferon response and unfolded protein response, to be only modestly activated during DENV infection. These data support a model where DENV reprograms the ER protein synthesis and processing environment to promote viral survival and replication while minimizing the activation of antiviral and proteostatic stress response pathways.IMPORTANCE DENV, a prominent human health threat with no broadly effective or specific treatment, depends on host cell translation machinery for viral replication, immune evasion, and virion biogenesis. The molecular mechanism by which DENV commandeers the host cell protein synthesis machinery and the subcellular organization of DENV replication and viral protein synthesis is poorly understood. Here, we report that DENV has an almost exclusively ER-localized life cycle, with viral replication and translation largely restricted to the ER. Surprisingly, DENV infection largely affects only ER-associated translation, with relatively modest effects on host cell translation in the cytosol. DENV RNA translation is very inefficient, likely representing a strategy to minimize disruption of ER proteostasis. Overall these findings demonstrate that DENV has evolved an ER-compartmentalized life cycle; thus, targeting the molecular signatures and regulation of the DENV-ER interaction landscape may reveal strategies for therapeutic intervention.


Assuntos
Vírus da Dengue/fisiologia , Dengue/imunologia , Retículo Endoplasmático/imunologia , Evasão da Resposta Imune , Biossíntese de Proteínas/imunologia , RNA Mensageiro/imunologia , RNA Viral/imunologia , Replicação Viral/imunologia , Linhagem Celular Tumoral , Dengue/patologia , Retículo Endoplasmático/patologia , Retículo Endoplasmático/virologia , Humanos , Interferons/imunologia , Resposta a Proteínas não Dobradas/imunologia
19.
Antiviral Res ; 143: 176-185, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28389141

RESUMO

In many countries afflicted with dengue fever, traditional medicines are widely used as panaceas for illness, and here we describe the systematic evaluation of a widely known natural product, luteolin, originating from the "heat clearing" class of herbs. We show that luteolin inhibits the replication of all four serotypes of dengue virus, but the selectivity of the inhibition was weak. In addition, ADE-mediated dengue virus infection of human cell lines and primary PBMCs was inhibited. In a time-of-drug-addition study, luteolin was found to reduce infectious virus particle formation, but not viral RNA synthesis, in Huh-7 cells. During the virus life cycle, the host protease furin cleaves the pr moiety from prM protein of immature virus particles in the trans-Golgi network to produce mature virions. Analysis of virus particles from luteolin-treated cells revealed that prM was not cleaved efficiently. Biochemical interrogation of human furin showed that luteolin inhibited the enzyme activity in an uncompetitive manner, with Ki value of 58.6 µM, suggesting that treatment may restrict the virion maturation process. Luteolin also exhibited in vivo antiviral activity in mice infected with DENV, causing reduced viremia. Given the mode of action of luteolin and its widespread source, it is possible that it can be tested in combination with other dengue virus inhibitors.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Furina/metabolismo , Luteolina/antagonistas & inibidores , Pró-Proteína Convertases/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Células A549 , Animais , Antivirais/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Replicação do DNA/efeitos dos fármacos , Dengue/tratamento farmacológico , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/genética , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Cinética , Luteolina/administração & dosagem , Luteolina/química , Masculino , Camundongos , Pró-Proteína Convertases/metabolismo , RNA Viral/efeitos dos fármacos , Viremia/tratamento farmacológico , Vírion/efeitos dos fármacos , Rede trans-Golgi/efeitos dos fármacos
20.
PLoS Negl Trop Dis ; 10(8): e0004851, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27509020

RESUMO

UNLABELLED: CELADEN was a randomized placebo-controlled trial of 50 patients with confirmed dengue fever to evaluate the efficacy and safety of celgosivir (A study registered at ClinicalTrials.gov, number NCT01619969). Celgosivir was given as a 400 mg loading dose and 200 mg bid (twice a day) over 5 days. Replication competent virus was measured by plaque assay and compared to reverse transcription quantitative PCR (qPCR) of viral RNA. Pharmacokinetics (PK) correlations with viremia, immunological profiling, next generation sequence (NGS) analysis and hematological data were evaluated as exploratory endpoints here to identify possible signals of pharmacological activity. Viremia by plaque assay strongly correlated with qPCR during the first four days. Immunological profiling demonstrated a qualitative shift in T helper cell profile during the course of infection. NGS analysis did not reveal any prominent signature that could be associated with drug treatment; however the phylogenetic spread of patients' isolates underlines the importance of strain variability that may potentially confound interpretation of dengue drug trials conducted during different outbreaks and in different countries. Celgosivir rapidly converted to castanospermine (Cast) with mean peak and trough concentrations of 5727 ng/mL (30.2 µM) and 430 ng/mL (2.3 µM), respectively and cleared with a half-life of 2.5 (± 0.6) hr. Mean viral log reduction between day 2 and 4 (VLR2-4) was significantly greater in secondary dengue than primary dengue (p = 0.002). VLR2-4 did not correlate with drug AUC but showed a trend of greater response with increasing Cmin. PK modeling identified dosing regimens predicted to achieve 2.4 to 4.5 times higher Cmin. than in the CELADEN trial for only 13% to 33% increase in overall dose. A small, non-statistical trend towards better outcome on platelet nadir and difference between maximum and minimum hematocrit was observed in celgosivir-treated patients with secondary dengue infection. Optimization of the dosing regimen and patient stratification may enhance the ability of a clinical trial to demonstrate celgosivir activity in treating dengue fever based on hematological endpoints. A new clinical trial with a revised dosing regimen is slated to start in 2016 (NCT02569827). Furthermore celgosivir's potential value for treatment of other flaviruses such as Zika virus should be investigated urgently. TRIAL REGISTRATION: ClinicalTrials.gov NCT01619969.


Assuntos
Antivirais/administração & dosagem , Antivirais/farmacocinética , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Dengue/imunologia , Indolizinas/administração & dosagem , Indolizinas/farmacocinética , Carga Viral/efeitos dos fármacos , Adulto , Antivirais/efeitos adversos , Citocinas/sangue , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/fisiologia , Feminino , Meia-Vida , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Indolizinas/efeitos adversos , Indolizinas/sangue , Masculino , Filogenia , Células Th1/imunologia , Viremia/tratamento farmacológico , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...