Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Neural Netw Learn Syst ; 33(9): 4785-4799, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33684046

RESUMO

In a modern e-commerce recommender system, it is important to understand the relationships among products. Recognizing product relationships-such as complements or substitutes-accurately is an essential task for generating better recommendation results, as well as improving explainability in recommendation. Products and their associated relationships naturally form a product graph, yet existing efforts do not fully exploit the product graph's topological structure. They usually only consider the information from directly connected products. In fact, the connectivity of products a few hops away also contains rich semantics and could be utilized for improved relationship prediction. In this work, we formulate the problem as a multilabel link prediction task and propose a novel graph neural network-based framework, item relationship graph neural network (IRGNN), for discovering multiple complex relationships simultaneously. We incorporate multihop relationships of products by recursively updating node embeddings using the messages from their neighbors. An edge relational network is designed to effectively capture relational information between products. Extensive experiments are conducted on real-world product data, validating the effectiveness of IRGNN, especially on large and sparse product graphs.


Assuntos
Algoritmos , Redes Neurais de Computação , Comércio , Semântica
2.
IEEE Trans Cybern ; 46(3): 766-77, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25910268

RESUMO

Pattern recognition and machine learning techniques have been increasingly adopted in adversarial settings such as spam, intrusion, and malware detection, although their security against well-crafted attacks that aim to evade detection by manipulating data at test time has not yet been thoroughly assessed. While previous work has been mainly focused on devising adversary-aware classification algorithms to counter evasion attempts, only few authors have considered the impact of using reduced feature sets on classifier security against the same attacks. An interesting, preliminary result is that classifier security to evasion may be even worsened by the application of feature selection. In this paper, we provide a more detailed investigation of this aspect, shedding some light on the security properties of feature selection against evasion attacks. Inspired by previous work on adversary-aware classifiers, we propose a novel adversary-aware feature selection model that can improve classifier security against evasion attacks, by incorporating specific assumptions on the adversary's data manipulation strategy. We focus on an efficient, wrapper-based implementation of our approach, and experimentally validate its soundness on different application examples, including spam and malware detection.

3.
IEEE Trans Neural Netw Learn Syst ; 27(5): 978-92, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26054075

RESUMO

The training of a multilayer perceptron neural network (MLPNN) concerns the selection of its architecture and the connection weights via the minimization of both the training error and a penalty term. Different penalty terms have been proposed to control the smoothness of the MLPNN for better generalization capability. However, controlling its smoothness using, for instance, the norm of weights or the Vapnik-Chervonenkis dimension cannot distinguish individual MLPNNs with the same number of free parameters or the same norm. In this paper, to enhance generalization capabilities, we propose a stochastic sensitivity measure (ST-SM) to realize a new penalty term for MLPNN training. The ST-SM determines the expectation of the squared output differences between the training samples and the unseen samples located within their Q -neighborhoods for a given MLPNN. It provides a direct measurement of the MLPNNs output fluctuations, i.e., smoothness. We adopt a two-phase Pareto-based multiobjective training algorithm for minimizing both the training error and the ST-SM as biobjective functions. Experiments on 20 UCI data sets show that the MLPNNs trained by the proposed algorithm yield better accuracies on testing data than several recent and classical MLPNN training methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA