Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Ophthalmology ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38697267

RESUMO

PURPOSE: To understand the availability of vision care provided within Federally Qualified Health Centers (FQHCs) in 2017 versus 2021, and to assess whether differences exist in neighborhood-level demographic factors and social risk factors (SRFs) between FQHCs based on the availability of eye care services. DESIGN: Secondary data analysis of the Health Resources and Services Administration (HRSA) FQHC data and 2017-2021 American Community Survey neighborhood SRFs. PARTICIPANTS: FQHCs in 2017 and 2021. METHODS: Patient and neighborhood characteristics for each SRF were summarized. Differences in FQHCs providing and not providing vision care were compared via Wilcoxon Mann-Whitney tests for continuous measures and chi-square tests for categorical measures. Logistic regression models were used to test the associations between neighborhood measures and FQHCs providing vision care, adjusted for patient characteristics. MAIN OUTCOME MEASURES: Odds ratios (ORs) with 95% confidence intervals for neighborhood-level predictors of FQHCs providing vision care services. RESULTS: Overall, 28.5% of FQHCs (n=375/1318) provided vision care in 2017 vs. 32% (n=435/1362) in 2021 with some increases and decreases in both the number of FQHCs and those with and without vision services. Only 2.6% of people who accessed FQHC services received eye care in 2021. Among the 435 FQHCs that provided vision care in 2021, 27.1% (n=118) had added vision services between 2017 and 2021, 71.5% (n=311) had been offering vision services since at least 2017, and 1.4% were newly established. Logistic regression models demonstrated FQHCs providing vision care in 2021 were more likely to be in neighborhoods with higher percentage of Hispanic/Latino individuals (OR=1.08, 95% CI=1.02-1.14, p=0.0094), Medicaid-insured individuals (OR=1.08, 95% CI=1.02-1.14, p=0.0120), and no car households (OR=1.07, 95% CI=1.01-1.13, p=0.0142). However, FQHCs with vision care, compared to FQHCs without vision care, served a lower percentage of Hispanic/Latino individuals (27.2% vs. 33.9%, p=0.0007), Medicaid-insured patients (42.8% vs. 46.8%, p<0.0001), and patients living at/below 100% of the federal poverty line (61.3% vs. 66.3%, p<0.0001). CONCLUSIONS: Vision care services are available at few FQHCs, localized to a few states. Expanding access to eye care at FQHCs would meet patients where they seek care to mitigate vision loss to underserved communities.

2.
JAMA Ophthalmol ; 142(4): 327-335, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451496

RESUMO

Importance: Retinopathy of prematurity (ROP) is a leading cause of blindness in children, with significant disparities in outcomes between high-income and low-income countries, due in part to insufficient access to ROP screening. Objective: To evaluate how well autonomous artificial intelligence (AI)-based ROP screening can detect more-than-mild ROP (mtmROP) and type 1 ROP. Design, Setting, and Participants: This diagnostic study evaluated the performance of an AI algorithm, trained and calibrated using 2530 examinations from 843 infants in the Imaging and Informatics in Retinopathy of Prematurity (i-ROP) study, on 2 external datasets (6245 examinations from 1545 infants in the Stanford University Network for Diagnosis of ROP [SUNDROP] and 5635 examinations from 2699 infants in the Aravind Eye Care Systems [AECS] telemedicine programs). Data were taken from 11 and 48 neonatal care units in the US and India, respectively. Data were collected from January 2012 to July 2021, and data were analyzed from July to December 2023. Exposures: An imaging processing pipeline was created using deep learning to autonomously identify mtmROP and type 1 ROP in eye examinations performed via telemedicine. Main Outcomes and Measures: The area under the receiver operating characteristics curve (AUROC) as well as sensitivity and specificity for detection of mtmROP and type 1 ROP at the eye examination and patient levels. Results: The prevalence of mtmROP and type 1 ROP were 5.9% (91 of 1545) and 1.2% (18 of 1545), respectively, in the SUNDROP dataset and 6.2% (168 of 2699) and 2.5% (68 of 2699) in the AECS dataset. Examination-level AUROCs for mtmROP and type 1 ROP were 0.896 and 0.985, respectively, in the SUNDROP dataset and 0.920 and 0.982 in the AECS dataset. At the cross-sectional examination level, mtmROP detection had high sensitivity (SUNDROP: mtmROP, 83.5%; 95% CI, 76.6-87.7; type 1 ROP, 82.2%; 95% CI, 81.2-83.1; AECS: mtmROP, 80.8%; 95% CI, 76.2-84.9; type 1 ROP, 87.8%; 95% CI, 86.8-88.7). At the patient level, all infants who developed type 1 ROP screened positive (SUNDROP: 100%; 95% CI, 81.4-100; AECS: 100%; 95% CI, 94.7-100) prior to diagnosis. Conclusions and Relevance: Where and when ROP telemedicine programs can be implemented, autonomous ROP screening may be an effective force multiplier for secondary prevention of ROP.


Assuntos
Retinopatia da Prematuridade , Recém-Nascido , Lactente , Criança , Humanos , Retinopatia da Prematuridade/diagnóstico , Inteligência Artificial , Estudos Transversais , Idade Gestacional , Recém-Nascido Prematuro
3.
Front Med (Lausanne) ; 11: 1349093, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439905

RESUMO

Childhood blindness is an issue of global health impact, affecting approximately 2 million children worldwide. Vision 2020 and the United Nations Sustainable Development Goals previously identified childhood blindness as a key issue in the twentieth century, and while public health measures are underway, the precise etiologies and management require ongoing investigation and care, particularly within resource-limited settings such as sub-Saharan Africa. We systematically reviewed the literature on childhood blindness in West Africa to identify the anatomic classification and etiologies, particularly those causes of childhood blindness with systemic health implications. Treatable causes included cataract, refractive error, and corneal disease. Systemic etiologies identified included measles, rubella, vitamin A deficiency, and Ebola virus disease. While prior public health measures including vitamin A supplementation and vaccination programs have been deployed in most countries with reported data, multiple studies reported preventable or reversible etiologies of blindness and vision impairment. Ongoing research is necessary to standardize reporting for anatomies and/or etiologies of childhood blindness to determine the necessity of further development and implementation of public health measures that would ameliorate childhood blindness and vision impairment.

4.
Commun Biol ; 7(1): 107, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233474

RESUMO

We conducted a genome-wide association study (GWAS) in a multiethnic cohort of 920 at-risk infants for retinopathy of prematurity (ROP), a major cause of childhood blindness, identifying 1 locus at genome-wide significance level (p < 5×10-8) and 9 with significance of p < 5×10-6 for ROP ≥ stage 3. The most significant locus, rs2058019, reached genome-wide significance within the full multiethnic cohort (p = 4.96×10-9); Hispanic and European Ancestry infants driving the association. The lead single nucleotide polymorphism (SNP) falls in an intronic region within the Glioma-associated oncogene family zinc finger 3 (GLI3) gene. Relevance for GLI3 and other top-associated genes to human ocular disease was substantiated through in-silico extension analyses, genetic risk score analysis and expression profiling in human donor eye tissues. Thus, we identify a novel locus at GLI3 with relevance to retinal biology, supporting genetic susceptibilities for ROP risk with possible variability by race and ethnicity.


Assuntos
Estudo de Associação Genômica Ampla , Retinopatia da Prematuridade , Recém-Nascido , Humanos , Etnicidade , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
5.
Ophthalmic Epidemiol ; 31(1): 11-20, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36820490

RESUMO

PURPOSE: To examine the association between neighborhood-level social vulnerability and adherence to scheduled ophthalmology appointments. METHODS: In this retrospective cohort study, records of all patients ≥18 years scheduled for an ophthalmology appointment between September 12, 2020, and February 8, 2021, were reviewed. Primary exposure is neighborhood-level Social Vulnerability Index (SVI) based on the patient's residential location. SVI is a rank score of 15 social factors into four themes (socioeconomic status, household composition/disability, minority status/language, and housing type/transportation), ranging from 0 to 1.0, with higher ranks indicating greater social vulnerability. The overall SVI score and each theme were analyzed separately as the primary exposure of interest in multivariable logistic regression models that controlled for age, sex, appointment status (new or established), race, and distance from clinic. The primary outcome, non-adherence, was defined as missing more than 25% of scheduled appointments. RESULTS: Of 8,322 patients (41% non-Hispanic Black, 24% Hispanic, 22% non-Hispanic White) with scheduled appointments, 28% were non-adherent. Non-adherence was associated with greater social vulnerability (adjusted odds ratio [aOR] per 0.01 increase in overall SVI = 2.46 [95% confidence interval, 1.99, 3.06]) and each SVI theme (socioeconomic status: aOR = 2.38 [1.94, 2.91]; household composition/disability: aOR = = 1.51 [1.26, 1.81]; minority status/language: aOR = 2.03 [1.55, 2.68]; housing type/transportation: aOR = 1.41 [1.16, 1.73]). CONCLUSION: Neighborhood-level social vulnerability is associated with greater risk of non-adherence to scheduled ophthalmology appointments, controlling for individual characteristics. Multi-level intervention strategies that incorporate neighborhood-level vulnerabilities are needed to reduce disparities in access to ophthalmology care.


Assuntos
Oftalmologia , Humanos , Estudos Retrospectivos , Vulnerabilidade Social , Cooperação do Paciente , Etnicidade
7.
Ophthalmol Sci ; 4(2): 100417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38059124

RESUMO

Purpose: Retinopathy of prematurity (ROP) is one of the leading causes of blindness in children. Although the role of oxygen in the pathophysiology of ROP is well established, a precise understanding of the dynamic relationship between oxygen exposure ROP incidence and severity is lacking. The purpose of this study was to evaluate the correlation between time-dependent oxygen variables and the onset of ROP. Design: Retrospective cohort study. Participants: Two hundred thirty infants who were born at a single academic center and met the inclusion criteria were included. Infants are mainly born between January 2011 and October 2022. Methods: Patient data were extracted from electronic health records (EHRs), with sufficient time-dependent oxygen data. Clinical outcomes for ROP were recorded as none/mild or moderate/severe (defined as type II or worse). Mixed-effects linear models were used to compare the 2 groups in terms of dynamic oxygen variables, such as daily average and the coefficient of variation (COV) fraction of inspired oxygen (FiO2). Support vector machine (SVM) and long-short-term memory (LSTM)-based multimodal models were trained with fivefold cross-validation to predict which infants would develop moderate/severe ROP. Gestational age (GA), birth weight, and time-dependent oxygen variables were used to develop predictive models. Main Outcome Measures: Model cross-validation performance was evaluated by computing the mean area under the receiver operating characteristic (AUROC) curve, precision, recall, and F1 score. Results: We found that both daily average and COV of FiO2 were associated with more severe ROP (adjusted P < 0.001). With fivefold cross-validation, the multimodal LSTM models had higher performance than the best static models (SVM using GA and 3 average FiO2 features) and SVM models trained on GA alone (mean AUROC = 0.89 ± 0.04 vs. 0.86 ± 0.05 vs. 0.83 ± 0.04). Conclusions: The development of severe ROP might not only be influenced by oxygen exposure but also by its fluctuation, which provides direction for future study of pathophysiological factors associated with severe ROP development. Additionally, we demonstrated that multimodal neural networks can be a method to extract useful information from time-series data, which may be a valuable methodology for the investigation of other diseases using EHR data. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

8.
Biomed Opt Express ; 14(11): 5629-5641, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38021114

RESUMO

Multi-spectral widefield fundus photography is valuable for the clinical diagnosis and management of ocular conditions that may impact both central and peripheral regions of the retina and choroid. Trans-palpebral illumination has been demonstrated as an alternative to transpupillary illumination for widefield fundus photography without requiring pupil dilation. However, spectral efficiency can be complicated due to the spatial variance of the light property through the palpebra and sclera. This study aims to investigate the effect of light delivery location on spectral efficiency in trans-palpebral illumination. Four narrow-band light sources, covering both visible and near infrared (NIR) wavelengths, were used to evaluate spatial dependency of spectral illumination efficiency. Comparative analysis indicated a significant dependence of visible light efficiency on spatial location, while NIR light efficiency is only slightly affected by the illumination location. This study confirmed the pars plana as the optimal location for delivering visible light to achieve color imaging of the retina. Conversely, spatial location is not critical for NIR light imaging of the choroid.

9.
Biomed Opt Express ; 14(11): 5932-5945, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38021139

RESUMO

The purpose of this study is to demonstrate the feasibility of using polarization maintaining photons for enhanced contrast imaging of the retina. Orthogonal-polarization control has been frequently used in conventional fundus imaging systems to minimize reflection artifacts. However, the orthogonal-polarization configuration also rejects the directly reflected photons, which preserve the polarization condition of incident light, from the superficial layer of the fundus, i.e., the retina, and thus reduce the contrast of retinal imaging. We report here a portable fundus camera which can simultaneously perform orthogonal-polarization control to reject back-reflected light from the ophthalmic lens and parallel-polarization control to preserve the backscattered light from the retina which partially maintains the polarization state of the incoming light. This portable device utilizes miniaturized indirect ophthalmoscopy illumination to achieve non-mydriatic imaging, with a snapshot field of view of 101° eye-angle (67° visual-angle). Comparative analysis of retinal images acquired with a traditional orthogonal-polarization fundus camera from both normal and diseased eyes was conducted to validate the usefulness of the proposed design. The parallel-polarization control for enhanced contrast in high dynamic range imaging has also been validated.

10.
Transl Vis Sci Technol ; 12(11): 8, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37922149

RESUMO

Purpose: This study aims to investigate generalizability of deep learning (DL) models trained on commonly used public fundus images to an instance of real-world data (RWD) for glaucoma diagnosis. Methods: We used Illinois Eye and Ear Infirmary fundus data set as an instance of RWD in addition to six publicly available fundus data sets. We compared the performance of DL-trained models on public data and RWD for glaucoma classification and optic disc (OD) segmentation tasks. For each task, we created models trained on each data set, respectively, and each model was tested on both data sets. We further examined each model's decision-making process and learned embeddings for the glaucoma classification task. Results: Using public data for the test set, public-trained models outperformed RWD-trained models in OD segmentation and glaucoma classification with a mean intersection over union of 96.3% and mean area under the receiver operating characteristic curve of 95.0%, respectively. Using the RWD test set, the performance of public models decreased by 8.0% and 18.4% to 85.6% and 76.6% for OD segmentation and glaucoma classification tasks, respectively. RWD models outperformed public models on RWD test sets by 2.0% and 9.5%, respectively, in OD segmentation and glaucoma classification tasks. Conclusions: DL models trained on commonly used public data have limited ability to generalize to RWD for classifying glaucoma. They perform similarly to RWD models for OD segmentation. Translational Relevance: RWD is a potential solution for improving generalizability of DL models and enabling clinical translations in the care of prevalent blinding ophthalmic conditions, such as glaucoma.


Assuntos
Aprendizado Profundo , Glaucoma , Disco Óptico , Humanos , Inteligência Artificial , Disco Óptico/diagnóstico por imagem , Glaucoma/diagnóstico , Fundo de Olho
11.
Biomed Opt Express ; 14(9): 4713-4724, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791267

RESUMO

The purpose of this study is to evaluate layer fusion options for deep learning classification of optical coherence tomography (OCT) angiography (OCTA) images. A convolutional neural network (CNN) end-to-end classifier was utilized to classify OCTA images from healthy control subjects and diabetic patients with no retinopathy (NoDR) and non-proliferative diabetic retinopathy (NPDR). For each eye, three en-face OCTA images were acquired from the superficial capillary plexus (SCP), deep capillary plexus (DCP), and choriocapillaris (CC) layers. The performances of the CNN classifier with individual layer inputs and multi-layer fusion architectures, including early-fusion, intermediate-fusion, and late-fusion, were quantitatively compared. For individual layer inputs, the superficial OCTA was observed to have the best performance, with 87.25% accuracy, 78.26% sensitivity, and 90.10% specificity, to differentiate control, NoDR, and NPDR. For multi-layer fusion options, the best option is the intermediate-fusion architecture, which achieved 92.65% accuracy, 87.01% sensitivity, and 94.37% specificity. To interpret the deep learning performance, the Gradient-weighted Class Activation Mapping (Grad-CAM) was utilized to identify spatial characteristics for OCTA classification. Comparative analysis indicates that the layer data fusion options can affect the performance of deep learning classification, and the intermediate-fusion approach is optimal for OCTA classification of DR.

12.
Lancet Glob Health ; 11(9): e1432-e1443, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37591589

RESUMO

Global eye health is defined as the degree to which vision, ocular health, and function are maximised worldwide, thereby optimising overall wellbeing and quality of life. Improving eye health is a global priority as a key to unlocking human potential by reducing the morbidity burden of disease, increasing productivity, and supporting access to education. Although extraordinary progress fuelled by global eye health initiatives has been made over the last decade, there remain substantial challenges impeding further progress. The accelerated development of digital health and artificial intelligence (AI) applications provides an opportunity to transform eye health, from facilitating and increasing access to eye care to supporting clinical decision making with an objective, data-driven approach. Here, we explore the opportunities and challenges presented by digital health and AI in global eye health and describe how these technologies could be leveraged to improve global eye health. AI, telehealth, and emerging technologies have great potential, but require specific work to overcome barriers to implementation. We suggest that a global digital eye health task force could facilitate coordination of funding, infrastructural development, and democratisation of AI and digital health to drive progress forwards in this domain.


Assuntos
Inteligência Artificial , Qualidade de Vida , Humanos , Comitês Consultivos , Tomada de Decisão Clínica , Escolaridade
13.
JAMA Ophthalmol ; 141(9): 870-871, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37561522
14.
Front Med (Lausanne) ; 10: 1198228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484841

RESUMO

Diabetic retinopathy (DR) is a leading cause of vision loss in the United States and throughout the world. With early detection and treatment, sight-threatening sequelae from DR can be prevented. Although artificial intelligence (AI) based DR screening programs have been proven to be effective in identifying patients at high risk of vision loss, adoption of AI in clinical practice has been slow. We adapted the United Kingdom Design Council's Double-Diamond model to design a strategy for care delivery which integrates an AI-based screening program for DR into a primary care setting. Methods from human-centered design were used to develop a strategy for implementation informed by context-specific barriers and facilitators. The purpose of this community case study is to present findings from this work in progress, including a system of protocols, educational documents and workflows created using key stakeholder input.

15.
Res Sq ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37292936

RESUMO

We conducted a genome-wide association study (GWAS) in a multiethnic cohort of 920 at-risk infants for retinopathy of prematurity (ROP), a major cause of childhood blindness, identifying 2 loci at genome-wide significance level (p<5×10-8) and 7 at suggestive significance (p<5×10-6) for ROP ≥ stage 3. The most significant locus, rs2058019, reached genome-wide significance within the full multiethnic cohort (p=4.96×10-9); Hispanic and Caucasian infants driving the association. The lead single nucleotide polymorphism (SNP) falls in an intronic region within the Glioma-associated oncogene family zinc finger 3 (GLI3) gene. Relevance for GLI3 and other top-associated genes to human ocular disease was substantiated through in-silico extension analyses, genetic risk score analysis and expression profiling in human donor eye tissues. Thus, we report the largest ROP GWAS to date, identifying a novel locus at GLI3 with relevance to retinal biology supporting genetic susceptibilities for ROP risk with possible variability by race and ethnicity.

16.
JAMA Ophthalmol ; 141(6): 582-588, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37166816

RESUMO

Importance: Retinopathy of prematurity (ROP) telemedicine screening programs have been found to be effective, but they rely on widefield digital fundus imaging (WDFI) cameras, which are expensive, making them less accessible in low- to middle-income countries. Cheaper, smartphone-based fundus imaging (SBFI) systems have been described, but these have a narrower field of view (FOV) and have not been tested in a real-world, operational telemedicine setting. Objective: To assess the efficacy of SBFI systems compared with WDFI when used by technicians for ROP screening with both artificial intelligence (AI) and human graders. Design, Setting, and Participants: This prospective cross-sectional comparison study took place as a single-center ROP teleophthalmology program in India from January 2021 to April 2022. Premature infants who met normal ROP screening criteria and enrolled in the teleophthalmology screening program were included. Those who had already been treated for ROP were excluded. Exposures: All participants had WDFI images and from 1 of 2 SBFI devices, the Make-In-India (MII) Retcam or Keeler Monocular Indirect Ophthalmoscope (MIO) devices. Two masked readers evaluated zone, stage, plus, and vascular severity scores (VSS, from 1-9) in all images. Smartphone images were then stratified by patient into training (70%), validation (10%), and test (20%) data sets and used to train a ResNet18 deep learning architecture for binary classification of normal vs preplus or plus disease, which was then used for patient-level predictions of referral warranted (RW)- and treatment requiring (TR)-ROP. Main Outcome and Measures: Sensitivity and specificity of detection of RW-ROP, and TR-ROP by both human graders and an AI system and area under the receiver operating characteristic curve (AUC) of grader-assigned VSS. Sensitivity and specificity were compared between the 2 SBFI systems using Pearson χ2testing. Results: A total of 156 infants (312 eyes; mean [SD] gestational age, 33.0 [3.0] weeks; 75 [48%] female) were included with paired examinations. Sensitivity and specificity were not found to be statistically different between the 2 SBFI systems. Human graders were effective with SBFI at detecting TR-ROP with a sensitivity of 100% and specificity of 83.49%. The AUCs with grader-assigned VSS only were 0.95 (95% CI, 0.91-0.99) and 0.96 (95% CI, 0.93-0.99) for RW-ROP and TR-ROP, respectively. For the AI system, the sensitivity of detecting TR-ROP sensitivity was 100% with specificity of 58.6%, and RW-ROP sensitivity was 80.0% with specificity of 59.3%. Conclusions and Relevance: In this cross-sectional study, 2 different SBFI systems used by technicians in an ROP screening program were highly sensitive for TR-ROP. SBFI systems with AI may be a cost-effective method to improve the global capacity for ROP screening.


Assuntos
Oftalmologia , Retinopatia da Prematuridade , Telemedicina , Recém-Nascido , Lactente , Humanos , Feminino , Adulto , Masculino , Estudos Transversais , Retinopatia da Prematuridade/diagnóstico , Estudos Prospectivos , Smartphone , Inteligência Artificial , Telemedicina/métodos , Recém-Nascido Prematuro , Idade Gestacional , Sensibilidade e Especificidade , Oftalmoscopia/métodos
17.
Diagnostics (Basel) ; 13(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37189561

RESUMO

Indirect ophthalmoscopy and handheld retinal imaging are the most common and traditional modalities for the evaluation and documentation of the pediatric fundus, especially for pre-verbal children. Optical coherence tomography (OCT) allows for in vivo visualization that resembles histology, and optical coherence tomography angiography (OCTA) allows for non-invasive depth-resolved imaging of the retinal vasculature. Both OCT and OCTA were extensively used and studied in adults, but not in children. The advent of prototype handheld OCT and OCTA have allowed for detailed imaging in younger infants and even neonates in the neonatal care intensive unit with retinopathy of prematurity (ROP). In this review, we discuss the use of OCTA and OCTA in various pediatric retinal diseases, including ROP, familial exudative vitreoretinopathy (FEVR), Coats disease and other less common diseases. For example, handheld portable OCT was shown to detect subclinical macular edema and incomplete foveal development in ROP, as well as subretinal exudation and fibrosis in Coats disease. Some challenges in the pediatric age group include the lack of a normative database and the difficulty in image registration for longitudinal comparison. We believe that technological improvements in the use of OCT and OCTA will improve our understanding and care of pediatric retina patients in the future.

18.
JAMA Ophthalmol ; 141(6): 543-552, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37140902

RESUMO

Importance: Although race is a social construct, it is associated with variations in skin and retinal pigmentation. Image-based medical artificial intelligence (AI) algorithms that use images of these organs have the potential to learn features associated with self-reported race (SRR), which increases the risk of racially biased performance in diagnostic tasks; understanding whether this information can be removed, without affecting the performance of AI algorithms, is critical in reducing the risk of racial bias in medical AI. Objective: To evaluate whether converting color fundus photographs to retinal vessel maps (RVMs) of infants screened for retinopathy of prematurity (ROP) removes the risk for racial bias. Design, Setting, and Participants: The retinal fundus images (RFIs) of neonates with parent-reported Black or White race were collected for this study. A u-net, a convolutional neural network (CNN) that provides precise segmentation for biomedical images, was used to segment the major arteries and veins in RFIs into grayscale RVMs, which were subsequently thresholded, binarized, and/or skeletonized. CNNs were trained with patients' SRR labels on color RFIs, raw RVMs, and thresholded, binarized, or skeletonized RVMs. Study data were analyzed from July 1 to September 28, 2021. Main Outcomes and Measures: Area under the precision-recall curve (AUC-PR) and area under the receiver operating characteristic curve (AUROC) at both the image and eye level for classification of SRR. Results: A total of 4095 RFIs were collected from 245 neonates with parent-reported Black (94 [38.4%]; mean [SD] age, 27.2 [2.3] weeks; 55 majority sex [58.5%]) or White (151 [61.6%]; mean [SD] age, 27.6 [2.3] weeks, 80 majority sex [53.0%]) race. CNNs inferred SRR from RFIs nearly perfectly (image-level AUC-PR, 0.999; 95% CI, 0.999-1.000; infant-level AUC-PR, 1.000; 95% CI, 0.999-1.000). Raw RVMs were nearly as informative as color RFIs (image-level AUC-PR, 0.938; 95% CI, 0.926-0.950; infant-level AUC-PR, 0.995; 95% CI, 0.992-0.998). Ultimately, CNNs were able to learn whether RFIs or RVMs were from Black or White infants regardless of whether images contained color, vessel segmentation brightness differences were nullified, or vessel segmentation widths were uniform. Conclusions and Relevance: Results of this diagnostic study suggest that it can be very challenging to remove information relevant to SRR from fundus photographs. As a result, AI algorithms trained on fundus photographs have the potential for biased performance in practice, even if based on biomarkers rather than raw images. Regardless of the methodology used for training AI, evaluating performance in relevant subpopulations is critical.


Assuntos
Inteligência Artificial , Racismo , Recém-Nascido , Lactente , Humanos , Adulto , Retina , Redes Neurais de Computação , Algoritmos
19.
Ophthalmology ; 130(8): 837-843, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37030453

RESUMO

PURPOSE: Epidemiological changes in retinopathy of prematurity (ROP) depend on neonatal care, neonatal mortality, and the ability to carefully titrate and monitor oxygen. We evaluate whether an artificial intelligence (AI) algorithm for assessing ROP severity in babies can be used to evaluate changes in disease epidemiology in babies from South India over a 5-year period. DESIGN: Retrospective cohort study. PARTICIPANTS: Babies (3093) screened for ROP at neonatal care units (NCUs) across the Aravind Eye Care System (AECS) in South India. METHODS: Images and clinical data were collected as part of routine tele-ROP screening at the AECS in India over 2 time periods: August 2015 to October 2017 and March 2019 to December 2020. All babies in the original cohort were matched 1:3 by birthweight (BW) and gestational age (GA) with babies in the later cohort. We compared the proportion of eyes with moderate (type 2) or treatment-requiring (TR) ROP, and an AI-derived ROP vascular severity score (from retinal fundus images) at the initial tele-retinal screening exam for all babies in a district, VSS), in the 2 time periods. MAIN OUTCOME MEASURES: Differences in the proportions of type 2 or worse and TR-ROP cases, and VSS between time periods. RESULTS: Among BW and GA matched babies, the proportion [95% confidence interval {CI}] of babies with type 2 or worse and TR-ROP decreased from 60.9% [53.8%-67.7%] to 17.1% [14.0%-20.5%] (P < 0.001) and 16.8% [11.9%-22.7%] to 5.1% [3.4%-7.3%] (P < 0.001), over the 2 time periods. Similarly, the median [interquartile range] VSS in the population decreased from 2.9 [1.2] to 2.4 [1.8] (P < 0.001). CONCLUSIONS: In South India, over a 5-year period, the proportion of babies developing moderate to severe ROP has dropped significantly for babies at similar demographic risk, strongly suggesting improvements in primary prevention of ROP. These results suggest that AI-based assessment of ROP severity may be a useful epidemiologic tool to evaluate temporal changes in ROP epidemiology. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Assuntos
Retinopatia da Prematuridade , Telemedicina , Recém-Nascido , Lactente , Humanos , Retinopatia da Prematuridade/diagnóstico , Retinopatia da Prematuridade/epidemiologia , Estudos Retrospectivos , Inteligência Artificial , Fatores de Risco , Idade Gestacional , Peso ao Nascer , Telemedicina/métodos , Triagem Neonatal/métodos
20.
Biomed Opt Express ; 14(2): 906-917, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36874492

RESUMO

Fundus photography is indispensable for the clinical detection and management of eye diseases. Low image contrast and small field of view (FOV) are common limitations of conventional fundus photography, making it difficult to detect subtle abnormalities at the early stages of eye diseases. Further improvements in image contrast and FOV coverage are important for early disease detection and reliable treatment assessment. We report here a portable, wide FOV fundus camera with high dynamic range (HDR) imaging capability. Miniaturized indirect ophthalmoscopy illumination was employed to achieve the portable design for nonmydriatic, widefield fundus photography. Orthogonal polarization control was used to eliminate illumination reflectance artifacts. With independent power controls, three fundus images were sequentially acquired and fused to achieve HDR function for local image contrast enhancement. A 101° eye-angle (67° visual-angle) snapshot FOV was achieved for nonmydriatic fundus photography. The effective FOV was readily expanded up to 190° eye-angle (134° visual-angle) with the aid of a fixation target without the need for pharmacologic pupillary dilation. The effectiveness of HDR imaging was validated with both normal healthy and pathologic eyes, compared to a conventional fundus camera.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...