Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(30): 20700-20708, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39019580

RESUMO

Electrocatalysis is generally confined to dynamic liquid-solid and gas-solid interfaces and is rarely applicable in solid-state reactions. Here, we report a paradigm shift strategy to exploit electrocatalysis to accelerate solid-state reactions in the context of lithium-ion batteries (LIBs). We employ heteroatom doping, specifically boron for silicon and sulfur for phosphorus, to catalyze electrochemical Li-alloying reactions in solid-state electrode materials. The preferential cleavage of polar dopant-host chemical bonds upon lithiation triggers chemical bond breaking of the host material. This solid-state catalysis, distinct from liquid and gas phases, requires a critical doping concentration for optimal performance. Beyond a critical concentration of ∼1 atom %, boron and sulfur doping drastically reduces activation energies and accelerates redox kinetics during lithiation/delithiation processes, leading to markedly enhanced rate performance in boron-doped silicon and sulfur-doped black/red phosphorus anode. Notably, a sulfur-doped black phosphorus anode coupled with a lithium cobalt oxide cathode achieves an ultrafast-charging battery, recharging 80% energy of a battery in 302 Wh kg-1 in 9 min, surpassing the thus far reported LIBs.

2.
Nat Nanotechnol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918614

RESUMO

Constructing regioselective architectures in heterostructures is important for many applications; however, the targeted design of regioselective architectures is challenging due to the sophisticated processes, impurity pollution and an unclear growth mechanism. Here we successfully realized a one-pot kinetically controlled synthetic framework for constructing regioselective architectures in metallic heterostructures. The key objective was to simultaneously consider the reduction rates of metal precursors and the lattice matching relationship at heterogeneous interfaces. More importantly, this synthetic method also provided phase- and morphology-independent behaviours as foundations for choosing substrate materials, including phase regulation from Pd20Sb7 hexagonal nanoplates (HPs) to Pd8Sb3 HPs, and morphology regulation from Pd20Sb7 HPs to Pd20Sb7 rhombohedra and Pd20Sb7 nanoparticles. Consequently, the activity of regioselective epitaxially grown Pt on Pd20Sb7 HPs was greatly enhanced towards the ethanol oxidation reaction; its activity was 57 times greater than that of commercial Pt/C, and the catalyst showed increased stability (decreasing by 16.3% after 2,000 cycles) and selectivity (72.4%) compared with those of commercial Pt/C (56.0%, 18.2%). This work paves the way for the design of unconventional well-defined heterostructures for use in various applications.

3.
Nat Chem ; 16(8): 1250-1260, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38918581

RESUMO

Providing affordable, safe drinking water and universal sanitation poses a grand societal challenge. Here we developed atomically dispersed Au on potassium-incorporated polymeric carbon nitride material that could simultaneously boost photocatalytic generation of ·OH and H2O2 with an apparent quantum efficiency over 85% at 420 nm. Potassium introduction into the poly(heptazine imide) matrix formed strong K-N bonds and rendered Au with an oxidation number close to 0. Extensive experimental characterization and computational simulations revealed that the low-valent Au altered the materials' band structure to trap highly localized holes produced under photoexcitation. These highly localized holes could boost the 1e- water oxidation reaction to form highly oxidative ·OH and simultaneously dissociate the hydrogen atom in H2O, which greatly promoted the reduction of oxygen to H2O2. The photogenerated ·OH led to an efficiency enhancement for visible-light-response superhydrophilicity. Furthermore, photo-illumination in an onsite fixed-bed reactor could disinfect water at a rate of 66 L H2O m-2 per day.

4.
Small ; : e2403448, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881353

RESUMO

Alcohol electrooxidation is pivotal for a sustainable energy economy. However, designing efficient electrocatalysts for this process is still a formidable challenge. Herein, palladium-selenium nanowires featuring distinct crystal phases: monoclinic Pd7Se2 and tetragonal Pd4.5Se for ethylene glycol electrooxidation reaction (EGOR) are synthesized. Notably, the supported monoclinic Pd7Se2 nanowires (m-Pd7Se2 NWs/C) exhibit superior EGOR activity, achieving a mass activity (MA) and specific activity (SA) of 10.4 A mgPd -1 (18.7 mA cm-2), which are 8.0 (6.7) and 10.4 (8.2) times versus the tetragonal Pd4.5Se and commercial Pd/C and surpass those reported in the literature. Furthermore, m-Pd7Se2 NWs/C displays robust catalytic activity for other alcohol electrooxidation. Comprehensive characterization and density functional theory (DFT) calculations reveal that the enhanced electrocatalytic performance is attributed to the increased formation of Pd0 on the high-index facets of the m-Pd7Se2 NWs, which lowers the energy barriers for the C─C bond dissociation in CHOHCHOH* and the CO* oxidation to CO2*. This study provides palladium-based alloy electrocatalysts exhibiting the highest mass activity reported to date for the electrooxidation of ethylene glycol, achieved through the crystalline phase engineering strategy.

5.
ACS Nano ; 18(17): 11474-11486, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38632861

RESUMO

Cobalt-nitrogen-carbon (Co-N-C) catalysts with a CoN4 structure exhibit great potential for oxygen reduction reaction (ORR), but the imperfect adsorption energy toward oxygen species greatly limits their reduction efficiency and practical application potential. Here, F-coordinated Co-N-C catalysts with square-pyramidal CoN4-F1 configuration are successfully synthesized using F atoms to regulate the axial coordination of Co centers via hydrothermal and chemical vapor deposition methods. During the synthesis process, the geometry structure of the Co atom converts from six-coordinated Co-F6 to square-pyramidal CoN4-F1 in the coordinatively unsaturated state, which provides an open binding site for the O2. The introduction of axial F atoms into the CoN4 plane alters the local atomic environment around Co, significantly improving the ORR activity and Zn-air batteries performance. In situ spectroscopy proves that CoN4-F1 sites strongly combine with the OOH* intermediate and facilitate the splitting of O-O bond, making OOH* readily decompose into O* and OH* via a dissociative pathway. Theoretical calculations confirm that the axial F atom effectively reduces the electronic density of the Co centers and facilitates the desorption of the OH* intermediate, efficiently accelerating the overall ORR kinetics. This work advances a feasible synthesis mechanism of axial ligands and provides a route to construct efficient high-coordination catalysts.

6.
Angew Chem Int Ed Engl ; 63(28): e202405438, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38682249

RESUMO

The alkaline oxygen evolution reaction (OER) is a promising avenue for producing clean fuels and storing intermittent energy. However, challenges such as excessive OH- consumption and strong adsorption of oxygen-containing intermediates hinder the development of alkaline OER. In this study, we propose a cooperative strategy by leveraging both nano-scale and atomically local electric fields for alkaline OER, demonstrated through the synthesis of Mn single atom doped CoP nanoneedles (Mn SA-CoP NNs). Finite element method simulations and density functional theory calculations predict that the nano-scale local electric field enriches OH- around the catalyst surface, while the atomically local electric field improves *O desorption. Experimental validation using in situ attenuated total reflection infrared and Raman spectroscopy confirms the effectiveness of the nano-scale and atomically electric fields. Mn SA-CoP NNs exhibit an ultra-low overpotential of 189 mV at 10 mA cm-2 and stable operation over 100 hours at ~100 mA cm-2 during alkaline OER. This innovative strategy provides new insights for enhancing catalyst performance in energy conversion reactions.

7.
Small ; 20(29): e2400564, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38368264

RESUMO

Developing efficient metal-free catalysts to directly synthesize hydrogen peroxide (H2O2) through a 2-electron (2e) oxygen reduction reaction (ORR) is crucial for substituting the traditional energy-intensive anthraquinone process. Here, in-plane topological defects enriched graphene with pentagon-S and pyrrolic-N coordination (SNC) is synthesized via the process of hydrothermal and nitridation. In SNC, pentagon-S and pyrrolic-N originating from thiourea precursor are covalently grafted onto the basal plane of the graphene framework, building unsymmetrical dumbbell-like S─C─N motifs, which effectively modulates atomic and electronic structures of graphene. The SNC catalyst delivers ultrahigh H2O2 productivity of 8.1, 7.3, and 3.9 mol gcatalyst -1 h-1 in alkaline, neutral, and acidic electrolytes, respectively, together with long-term operational stability in pH-universal electrolytes, outperforming most reported carbon catalysts. Theoretical calculations further unveil that defective S─C─N motifs efficiently optimize the binding strength to OOH* intermediate and substantially diminish the kinetic barrier for reducing O2 to H2O2, thereby promoting the intrinsic activity of 2e-ORR.

8.
Nat Commun ; 15(1): 1097, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321034

RESUMO

Bimetallic PtRu are promising electrocatalysts for hydrogen oxidation reaction in anion exchange membrane fuel cell, where the activity and stability are still unsatisfying. Here, PtRu nanowires were implanted with a series of oxophilic metal atoms (named as i-M-PR), significantly enhancing alkaline hydrogen oxidation reaction (HOR) activity and stability. With the dual doping of In and Zn atoms, the i-ZnIn-PR/C shows mass activity of 10.2 A mgPt+Ru-1 at 50 mV, largely surpassing that of commercial Pt/C (0.27 A mgPt-1) and PtRu/C (1.24 A mgPt+Ru-1). More importantly, the peak power density and specific power density are as high as 1.84 W cm-2 and 18.4 W mgPt+Ru-1 with a low loading (0.1 mg cm-2) anion exchange membrane fuel cell. Advanced experimental characterizations and theoretical calculations collectively suggest that dual doping with In and Zn atoms optimizes the binding strengths of intermediates and promotes CO oxidation, enhancing the HOR performances. This work deepens the understanding of developing novel alloy catalysts, which will attract immediate interest in materials, chemistry, energy and beyond.

9.
Nat Commun ; 15(1): 1264, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341446

RESUMO

Nitrate (NO3‒) pollution poses significant threats to water quality and global nitrogen cycles. Alkaline electrocatalytic NO3‒ reduction reaction (NO3RR) emerges as an attractive route for enabling NO3‒ removal and sustainable ammonia (NH3) synthesis. However, it suffers from insufficient proton (H+) supply in high pH conditions, restricting NO3‒-to-NH3 activity. Herein, we propose a halogen-mediated H+ feeding strategy to enhance the alkaline NO3RR performance. Our platform achieves near-100% NH3 Faradaic efficiency (pH = 14) with a current density of 2 A cm-2 and enables an over 99% NO3--to-NH3 conversion efficiency. We also convert NO3‒ to high-purity NH4Cl with near-unity efficiency, suggesting a practical approach to valorizing pollutants into valuable ammonia products. Theoretical simulations and in situ experiments reveal that Cl-coordination endows a shifted d-band center of Pd atoms to construct local H+-abundant environments, through arousing dangling O-H water dissociation and fast *H desorption, for *NO intermediate hydrogenation and finally effective NO3‒-to-NH3 conversion.

10.
J Am Chem Soc ; 146(1): 468-475, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38150583

RESUMO

The in-tandem catalyst holds great promise for addressing the limitation of low *CO coverage on Cu-based materials for selective C2H4 generation during CO2 electroreduction. However, the potential mismatch between the CO-formation catalyst and the favorable C-C coupling Cu catalyst represents a bottleneck in these types of electrocatalysts, resulting in low tandem efficiencies. In this study, we propose a robust solution to this problem by introducing a wide-CO generation-potential window nickel single atom catalyst (Ni SAC) supported on a Cu catalyst. The selection of Ni SAC was based on theoretical calculations, and its excellent performance was further confirmed by using in situ IR spectroscopy. The facilitated carbon dimerization in our tandem catalyst led to a ∼370 mA/cm2 partial current density of C2H4, corresponding to a faradic efficiency of ∼62%. This performance remained stable and consistent for at least ∼14 h at a high current density of 500 mA/cm2 in a flow-cell reactor, outperforming most tandem catalysts reported so far.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA