Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(3): e0290322, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154715

RESUMO

Mixed cryoglobulinemia (MC) is a hepatitis C virus (HCV)-related extrahepatic manifestation that is characterized by the abnormal presence of immune complexes (ICs). This may be due to the reduced uptake and clearance of ICs. The C-type lectin member 18A (CLEC18A) is a secretory protein that is expressed abundantly in hepatocytes. We previously observed that CLEC18A increased significantly in the phagocytes and sera of patients with HCV, particularly those with MC. Herein, we explored the biological functions of CLEC18A in the MC syndrome development of patients with HCV by using an in vitro cell-based assay with quantitative reverse transcription-PCR, immunoblotting, immunofluorescence, flow cytometry, and enzyme-linked immunosorbent assays. HCV infection or Toll-like receptor 3/7/8 activation could induce CLEC18A expression in Huh7.5 cells. Upregulated CLEC18A interacts with Rab5 and Rab7 and enhances type I/III interferon production to inhibit HCV replication in hepatocytes. However, overexpressed CLEC18A suppressed phagocytic activity in phagocytes. Significantly decreased levels of the Fc gamma receptor (FcγR) IIA were found in the neutrophils of HCV patients, particularly in those with MC (P < 0.005). We demonstrated that CLEC18A could inhibit FcγRIIA expression in a dose-dependent manner through the production of NOX-2-dependent reactive oxygen species to impair the uptake of ICs. Additionally, CLEC18A suppresses the Rab7 expression that is induced by starvation. Overexpressed CLEC18A does not affect autophagosome formation but does reduce the recruitment of Rab7 to autophagosomes, thereby retarding the maturation of autophagosomes and affecting autophagosome-lysosome fusion. We offer a novel molecular machinery with which to understand the association of HCV infection with autoimmunity and propose that CLEC18A may act as a candidate biomarker for HCV-associated MC. IMPORTANCE During infection, the host immune system produces cellular factors to protect against pathogen invasion. However, when the immune response overreacts and there is dysregulated cytokine homeostasis, autoimmunity occurs following an infection. We identified a cellular factor that is involved in HCV-related extrahepatic manifestation, namely, CLEC18A, which is expressed abundantly in hepatocytes and phagocytes. It inhibits HCV replication in hepatocytes by interacting with Rab5/7 and enhancing type I/III IFN expression. However, overexpressed CLEC18A inhibited FcγRIIA expression in phagocytes to impair phagocytosis. Furthermore, the interaction between CLEC18A and Rab5/7 may reduce the recruitment of Rab7 to autophagosomes and thereby retard autophagosome maturation and cause immune complex accumulation. A decreasing trend in CLEC18A levels that was accompanied by reduced HCV RNA titers and diminished cryoglobulin was observed in the sera of HCV-MC patients after direct-acting antiviral therapy. CLEC18A may be used for the evaluation of anti-HCV therapeutic drug effects and could be a potential predisposing factor for the development of MC syndrome.


Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Receptores de IgG , Antivirais/farmacologia , Autofagossomos , Hepacivirus/genética , Fagocitose , Lisossomos , Lectinas Tipo C/genética
2.
J Agric Food Chem ; 59(18): 9901-9, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21870884

RESUMO

H. sabdariffa polyphenolic extract (HPE) was demonstrated to inhibit high glucose-stimulated cellular changes. In this study, we analyzed the composition of HPE and used a type 2 diabetic rat model to test its protective effect. At least 18 phenolic compounds were found in HPE. Treatment with HPE reduced hyperglycemia and hyperinsulinemia, especially at the dose of 200 mg/kg. HPE decreased serum triacylglycerol, cholesterol, and the ratio of low density lipoprotein/high density lipoprotein (LDL/HDL). Diabetes promoted plasma advanced glycation end product (AGE) formation and lipid peroxidation, while HPE significantly reduced these elevations. Immunohistological observation revealed that HPE inhibited the expression of connective tissue growth factor (CTGF) and receptor of AGE (RAGE), which was increased in type 2 diabetic aortic regions. Furthermore, HPE recovered the weight loss found in type 2 diabetic rats. In conclusion, we demonstrated the anti-insulin resistance properties of HPE and its effect on hypoglycemia, hypolipidemia, and antioxidation. HPE has the potential to be an adjuvant for diabetic therapy.


Assuntos
Hibiscus/química , Hiperglicemia/tratamento farmacológico , Hiperlipidemias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Polifenóis/administração & dosagem , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/etiologia , Gorduras na Dieta/administração & dosagem , Produtos Finais de Glicação Avançada/análise , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Resistência à Insulina , Masculino , Fitoterapia , Extratos Vegetais/química , Polifenóis/análise , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...