Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Heliyon ; 10(9): e30436, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38711626

RESUMO

Gastric cancer is a global health concern, but current treatment with chemotherapy and surgery is often inadequate, prompting the exploration of alternative treatments. Propolis is a natural substance collected by bees known for its diverse properties linked to floral sources. The Dichloromethane Partitioned Extract (DPE) from Tetragonula laeviceps propolis, in Bankha district, Thailand was previously shown to possess significant cytotoxicity against KATO-III gastric cancer cells, while showing lower cytotoxicity toward WI-38 normal fibroblast cells. Here, the DPE was further fractionated by column chromatography, identified active fractions, and subjected to structural analysis using nuclear magnetic resonance spectroscopy. Cytotoxicity against KATO-III cells was reevaluated, and programmed cell death was analyzed using flow cytometry. Expression levels of cancer-related genes were measured using quantitative real-time reverse transcriptase PCR. Cardol C15:2 (compound 1) and mangiferolic acid (MF; compound 2) were discovered in the most active fractions following structural analysis. MF exhibited strong cytotoxicity against KATO-III cells (IC50 of 4.78-16.02 µg/mL), although this was less effective than doxorubicin (IC50 of 0.56-1.55 µg/mL). Morphological changes, including decreased cell density and increased debris, were observed in KATO-III cells treated with 30 µg/mL of MF. Significant induction of late-stage apoptosis and necrosis, particularly at 48 and 72 h, suggested potential DNA damage and cell cycle arrest, evidenced by an increased proportion of sub-G1 and S-phase cells. Doxorubicin, the positive control, triggered late apoptosis but caused more necrosis after 72 h. Furthermore, MF at 30 µg/mL significantly increased the expression level of COX2 and NFκB genes linked to inflammation and cell death pathways. This upregulation was consistent at later time points (48 and 72 h) and was accompanied by increased expression of CASP3 and CASP7 genes. These findings suggest MF effectively induces cell death in KATO-III cells through late apoptosis and necrosis, potentially mediated by upregulated inflammation-related genes.

2.
Heliyon ; 10(8): e29421, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38660263

RESUMO

Malassezia globosa, a lipophilic pathogen, is known to be involved in various chronic skin diseases. Unfortunately, the available treatments have unwanted side effects and microbial drug resistance is evolving. As the antimicrobial activity of propolis is outstanding, this study aimed to examine the potential of propolis from the stingless bee Geniotrigona thoracica against the yeast. Anti-M. globosa growth activity was ascertained in agar well diffusion and broth microdilution assays and the inhibitory concentration value at 50 % (IC50) was determined. Since the yeast cannot synthesize its own fatty acids, extracellular lipase is important for its survival. Here, anti-M. globosa extracellular lipase activity was additionally investigated by colorimetric and agar-based methods. Compared to the crude hexane and crude dichloromethane extracts, the crude methanol partitioned extract (CMPE) exhibited the best anti-M. globosa growth activity with an IC50 of 1.22 mg/mL. After CMPE was further enriched by silica gel column chromatography, fraction CMPE1 (IC50 of 0.98 mM or 184.93 µg/mL) presented the highest activity and was later identified as methyl gallate (MG) by nuclear magnetic resonance analysis. Subsequently, MG was successfully synthesized and shown to have a similar activity, and a minimal fungicidal concentration of 43.44 mM or 8.00 mg/mL. However, lipase assay analysis suggested that extracellular lipase might not be the main target mechanism of MG. This is the first report of MG as a new anti-Malassezia compound. It could be a good candidate for further developing alternative therapeutic agents.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37935274

RESUMO

This study examined the osmoregulatory responses to hypo-osmotic shock in the commercially and ecologically important crab Episesarma mederi (H. Milne Edwards, 1853). After the acclimation for one week at a salinity of 25 PSU, Adult males E. mederi were immediately exposed to salinities of 5 PSU and 25 PSU (the control group). The time course of changes in haemolymph osmolality, gill Na+/K+ ATPase (NKA) activity, oxygen uptake rates, and mRNA expression levels of ion-transport related genes, including the NKA-α subunit, V-type H+ATPase (VT) and Na+/K+/2Cl-(NKCC), were determined. The results showed that E. mederi was a strong hyperosmoregulator after exposure to 5 PSU, achieved by modulations of NKA activity in their posterior gills rather than the anterior gills. The crabs acclimated to 5 PSU increased oxygen uptake, especially during the initial exposure, reflecting increased energetic costs for osmotic stress responses. In the posterior gills, the NKA activities of the crabs acclimated to 5 PSU at 3, 72 and 168 h were significantly higher than those in the control group. Elevated NKA-α subunit expression levels were detected at 6 h and 12 h. Increased expression levels of VT and NKCC were identified at 6 h and 12 h, respectively. Our results indicate that elevated gill NKA activity at 3 h could result from enzyme activity and kinetic alterations. On the other hand, the gill NKA activity at 72 and 168 h was sustained by elevated NKA-α subunit expression. Hence, these adaptive responses in osmoregulation enable the crabs to withstand hypo-osmotic challenges and thrive in areas of fluctuating salinity in mangroves and estuaries.


Assuntos
Braquiúros , ATPases Vacuolares Próton-Translocadoras , Masculino , Animais , Osmorregulação , Pressão Osmótica , Braquiúros/genética , Braquiúros/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Salinidade , ATPases Vacuolares Próton-Translocadoras/metabolismo , Transporte de Íons , Oxigênio/metabolismo , Brânquias/metabolismo
4.
Nat Prod Res ; : 1-10, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715311

RESUMO

Four new alkylamides named retroframides A-D (1-4) together with twenty-two known compounds were isolated from the fruits of Piper rectrofractum. The structures of new compounds were elucidated on the basis of spectroscopic data including 2D NMR and chemical derivatization followed by GC-MS analysis. Of isolated compounds, piperine (25) and pellitorine (26) revealed moderate inhibition against tyrosinase with percentage inhibition of 36.1 and 40.7.

5.
Heliyon ; 9(5): e15556, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37153435

RESUMO

Osteoblast-like cells and human mesenchymal stem cells (hMSCs) are frequently employed as osteoprogenitor cell models for evaluating novel biomaterials in bone healing and tissue engineering. In this study, the characterization of UE7T-13 hMSCs and MG-63 human osteoblast-like cells was examined. Both cells can undergo osteogenesis and produce calcium extracellular matrix; however, calcium nodules produced by MG-63 lacked a central mass and appeared flatter than UE7T-13. The absence of growing calcium nodules in MG-63 was discovered by SEM-EDX to be associated with the formation of alternating layers of cells and calcium extracellular matrix. The nanostructure and composition analysis showed that UE7T-13 had a finer nanostructure of calcium nodules with a higher calcium/phosphate ratio than MG-63. Both cells expressed high intrinsic levels of collagen type I alpha 1 chain, while only UE7T-13 expressed high levels of alkaline phosphatase, biomineralization associated (ALPL). High ALP activity in UE7T-13 was not further enhanced by osteogenic induction, but in MG-63, low intrinsic ALP activity was greatly induced by osteogenic induction. These findings highlight the differences between the two immortal osteoprogenitor cell lines, along with some technical notes that should be considered while selecting and interpreting the pertinent in vitro model.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37098389

RESUMO

Sesamin, the major lignan in sesame seeds (Sesamum indicum L.), is known to have several pharmaceutical activities. However, its toxicological profile is still limited, especially regarding embryotoxicity. This study aimed to evaluate the developmental toxicity of sesamin in zebrafish embryos. After 72 h exposure, sesamin did not affect the survival and hatching rates, nor did it cause malformation in zebrafish embryos. Cardiotoxicity was also evaluated by monitoring embryo heartbeats and erythrocyte staining using o-dianisidine. The results showed that sesamin did not affect heart morphology, heart rate, or cardiac output in zebrafish embryos. The present study also evaluated sesamin's anti-angiogenesis, antioxidant and anti-inflammation activities. Sesamin significantly decreased the sub-intestinal vessel plexus as revealed by alkaline phosphatase staining indicating the compound exhibited anti-angiogenesis activity. For the antioxidant and anti-inflammatory assays, oxidative stress and inflammation in zebrafish embryos were induced by hydrogen peroxide and lipopolysaccharide, respectively. The reactive oxygen species (ROS) and nitric oxide (NO) production were detected using a fluorescent dye. Sesamin significantly decreased ROS and NO production in zebrafish embryos. In addition, the transcription examination by qRT-PCR of oxidative- and inflammation-related genes showed that sesamin affected the genes in a manner that correlated with results from the efficacy assays. In conclusion, the present study revealed that sesamin did not cause embryotoxicity and cardiotoxicity in zebrafish embryos. In addition, it exhibited evidence of anti-angiogenesis, antioxidant and anti-inflammatory activities.


Assuntos
Lignanas , Peixe-Zebra , Animais , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Cardiotoxicidade , Estresse Oxidativo , Lignanas/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Embrião não Mamífero
7.
PeerJ ; 10: e13506, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35637714

RESUMO

Background: Bee pollen (BP) is full of useful nutrients and phytochemicals.Its chemical components and bioactivities depend mainly on the type of floral pollen. Methods: Monofloral BP from Camellia sinensis L., Mimosa diplotricha, Helianthus annuus L., Nelumbo nucifera, Xyris complanata, and Ageratum conyzoides were harvested. Crude extraction and partition were performed to yield solvent-partitioned extracts of each BP. Total phenolic content (TPC) was assayed by the Folin-Ciocalteu method, while the flavonoid content (FC) was measured by the aluminium chloride colorimetric method. Antioxidant capacity was measured by the (i) 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, (ii) 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) scavenging activity and its Trolox equivalent antioxidant capacity (TEAC), and (iii) ferric reducing antioxidant power (FRAP). All samples were tested for lipoxygenase inhibitory (LOXI) activity. The most active sample was enriched by silica gel 60 column chromatography (SiG60-CC) and high performance liquid chromatography (HPLC), observing the chemical pattern of each fraction using thin layer chromatography. Chemical structure of the most active compound was analyzed by proton nuclear magnetic resonance and mass spectrometry. Results: Dichloromethane (DCM)-partitioned BP extracts of H. annuus L. and M. diplotricha (DCMMBP) showed a very high TPC, while DCMMBP had the highest FC. In addition, DCMMBP had the strongest DPPH and ABTS radical scavenging activities (as a TEAC value), as well as FRAP value. Also, DCMMBP (60 µg/mL) gave the highest LOXI activity (78.60 ± 2.81%). Hence, DCMMBP was chosen for further enrichment by SiG60-CC and HPLC. Following this, the most active fraction showed higher antioxidant andLOXI activities with an EC50 for DPPH and ABTS of 54.66 ± 3.45 µg/mL and 24.56 ± 2.99 µg/mL (with a TEAC value of 2,529.69 ± 142.16 µmole TE/g), respectively, and a FRAP value of 3,466.17 ± 81.30 µmole Fe2+/g and an IC50 for LOXI activity of 12.11 ± 0.36 µg/mL. Triferuloyl spermidines were revealed to be the likely main active components. Conclusions: TPC, FC, and spermidine derivatives played an important role in the antioxidant and antilipoxygenase activities in M. diplotricha bee pollen.


Assuntos
Antioxidantes , Espermidina , Humanos , Animais , Abelhas , Antioxidantes/farmacologia , População do Sudeste Asiático , Flavonoides/análise , Fenóis/análise , Compostos Fitoquímicos/farmacologia , Pólen/química
8.
Artigo em Inglês | MEDLINE | ID: mdl-35227877

RESUMO

Sesamolin is one of the major active compounds found in sesame seeds (Sesamum indicum L.) that are commonly and increasingly used as an ingredient in cuisines and various food products. The compound has been reported to have several pharmaceutical activities such as antioxidant, antimicrobial, neuroprotective, and anticancer. However, the toxicological profile of sesamolin does not currently include developmental toxicity. In this study, we assessed sesamolin toxicity to embryonic development of zebrafish by exposure for 72 h at concentrations ranging from 10 to 50 µM. The evaluation revealed that sesamolin did not affect survival and hatching rates. However, it did induce embryo malformations and reduced embryonic heart rates in a dose-dependent manner. By qRT-PCR analysis, it downregulated the expression of oxidative stress-related genes, including superoxide dismutase 1 (sod1), catalase (cat), and glutathione S-transferase pi 2 (gstp2). Alkaline phosphatase staining of embryos revealed that sesamolin inhibited the development of subintestinal vessels, and hemoglobin staining revealed a negative impact on embryonic erythropoiesis. These findings showed that sesamolin affected genes related to angiogenesis and erythropoiesis. The risks of sesamolin to embryonic development found in this study may imply similar effects in humans and other mammals.


Assuntos
Embrião não Mamífero , Peixe-Zebra , Animais , Dioxóis/metabolismo , Dioxóis/farmacologia , Mamíferos , Estresse Oxidativo , Peixe-Zebra/metabolismo
9.
PeerJ ; 10: e12722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35036098

RESUMO

Bee pollen (BP) is full of nutrients and phytochemicals, and so it is widely used as a health food and alternative medicine. Its composition and bioactivity mainly depend on the floral pollens. In this work, BP collected by Apis mellifera with different monoculture flowering crops (BP1-6) were used. The types of floral pollen in each BP were initially identified by morphology, and subsequently confirmed using molecular phylogenetic analysis. Data from both approaches were consistent and revealed each BP to be monofloral and derived from the flowers of Camellia sinensis L., Helianthus annuus L., Mimosa diplotricha, Nelumbo nucifera, Xyris complanata, and Ageratum conyzoides for BP1 to BP6, respectively. The crude extracts of all six BPs were prepared by sequential partition with methanol, dichloromethane (DCM), and hexane. The crude extracts were then tested for the in vitro (i) α-amylase inhibitory, (ii) acetylcholinesterase inhibitory (AChEI), and (iii) porcine pancreatic lipase inhibitory (PPLI) activities in terms of the percentage enzyme inhibition and half maximum inhibitory concentration (IC50). The DCM partitioned extract of X. complanata BP (DCMXBP) had the highest active α-amylase inhibitory activity with an IC50 value of 1,792.48 ± 50.56 µg/mL. The DCM partitioned extracts of C. sinensis L. BP (DCMCBP) and M. diplotricha BP (DCMMBP) had the highest PPLI activities with an IC50 value of 458.5 ± 13.4 and 500.8 ± 24.8 µg/mL, respectively), while no crude extract showed any marked AChEI activity. Here, the in vitro PPLI activity was focused on. Unlike C. sinensis L. BP, there has been no previous report of M. diplotricha BP having PPLI activity. Hence, DCMMBP was further fractionated by silica gel 60 column chromatography, pooling fractions with the same thin layer chromatography profile. The pooled fraction of DCMMBP2-1 was found to be the most active (IC50 of 52.6 ± 3.5 µg/mL), while nuclear magnetic resonance analysis revealed the presence of unsaturated free fatty acids. Gas chromatography with flame-ionization detection analysis revealed the major fatty acids included one saturated acid (palmitic acid) and two polyunsaturated acids (linoleic and linolenic acids). In contrast, the pooled fraction of DCMMBP2-2 was inactive but pure, and was identified as naringenin, which has previously been reported to be present in M. pigra L. Thus, it can be concluded that naringenin was compound marker for Mimosa BP. The fatty acids in BP are nutritional and pose potent PPLI activity.


Assuntos
Acetilcolinesterase , Ácidos Graxos , Abelhas , Animais , Suínos , Ácidos Graxos/análise , Acetilcolinesterase/análise , Filogenia , Pólen/química , Lipase/análise , alfa-Amilases/análise
10.
PeerJ ; 9: e12321, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721992

RESUMO

BACKGROUND: Controlling cellular functions, including stem cell growth and differentiation, can be the key for the treatment of metabolic disorders, such as type II diabetes mellitus (T2DM). Previously identified as peroxisome proliferator-activated receptor gamma (PPARγ) antagonist, betulinic acid (BA) may have the capability to control stem cell homeostasis, benefiting T2DM treatment. In this study, the effects of BA on osteogenesis and adipogenesis mechanisms of human mesenchymal stem cells (hMSCs) were investigated. RESULTS: We observed that BA increased hMSC osteogenesis by enhancing the alkaline phosphatase activity, calcium deposition, and mRNA expressions of osteogenic markers, namely, runt-related transcription factor 2, osteocalcin, and osteopontin. In addition, BA decreased hMSC adipogenesis with the decrease in glycerol-3-phosphate dehydrogenase activity, reduced intracellular lipid accumulations, down-regulated CCAAT-enhancer-binding protein alpha, and suppressed post-transcriptional adiponectin and leptin secretion. BA increased the brown adipocyte characteristics with the increase in the ratio of small lipid droplets and glucose uptake. Furthermore, the mRNA expressions of brown adipocyte markers, namely, PPARγ coactivator one alpha, uncoupling protein 1, and interleukin-6 increased. CONCLUSIONS: Our results uncovered the mechanisms of how BA improved glucose and lipid metabolisms by decreasing white adipogenesis and increasing brown adipogenesis. Altogether, BA may be used for balancing glucose metabolisms without the potential side effects on bone loss or weight gain.

11.
J Exp Biol ; 223(Pt 18)2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32680901

RESUMO

In honeybees there are three alleles of cytosolic malate dehydrogenase gene: F, M and S. Allele frequencies are correlated with environmental temperature, suggesting that the alleles have temperature-dependent fitness benefits. We determined the enzyme activity of each allele across a range of temperatures in vitro The F and S alleles have higher activity and are less sensitive to high temperatures than the M allele, which loses activity after incubation at temperatures found in the thorax of foraging bees in hot climates. Next, we predicted the protein structure of each allele and used molecular dynamics simulations to investigate their molecular flexibility. The M allozyme is more flexible than the S and F allozymes at 50°C, suggesting a plausible explanation for its loss of activity at high temperatures, and has the greatest structural flexibility at 15°C, suggesting that it can retain some enzyme activity at cooler temperatures. MM bees recovered from 2 h of cold narcosis significantly better than all other genotypes. Combined, these results explain clinal variation in malate dehydrogenase allele frequencies in the honeybee at the molecular level.


Assuntos
Malato Desidrogenase , Alelos , Animais , Abelhas/genética , Frequência do Gene , Genótipo , Malato Desidrogenase/genética , Temperatura
12.
PLoS One ; 15(3): e0229734, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32126122

RESUMO

European honeybee, Apis mellifera, produces α-glucosidase (HBGase) that catalyzes the cleavage of an α-glycosidic bond of the non-reducing end of polysaccharides and has potential applications for malt hydrolysis in brewing industry. Characterized by their substrate specificities, HBGases have three isoforms including HBGase II, which prefers maltose to sucrose as a substrate. Previous study found that the catalytic efficiency of maltose hydrolysis of N226P mutant of HBGase II was higher than that of the wild type (WT), and the catalytic efficiency of maltose hydrolysis of WT was higher than those of H227Y and N226P-H227Y mutants. We hypothesized that N226P mutation probably caused maltose to bind with better affinity and position/orientation for hydrolysis than WT, while H227Y and N226P-H227Y mutations caused maltose to bind with worse affinity and position/orientation for hydrolysis than WT. Using this hypothesis, we performed molecular dynamics on the catalytically competent binding conformations of maltose/WT, maltose/N226P, maltose/H227Y, and maltose/N226P-H227Y complexes to elucidate effects of N226P and H227Y mutations on maltose binding in HBGase II active site. Our results reasonably support this hypothesis because the N226P mutant had better binding affinity, higher number of important binding residues, strong and medium hydrogen bonds as well as shorter distance between atoms necessary for hydrolysis than WT, while the H227Y and N226P-H227Y mutants had worse binding affinities, lower number of important binding residues and strong hydrogen bonds as well as longer distances between atoms necessary for hydrolysis than WT. Moreover, results of binding free energy and hydrogen bond interaction of residue 227 support the role of H227 as a maltose preference residue, as proposed by previous studies. Our study provides important and novel insight into how N226P and H227Y mutations affect maltose binding in HBGase II active site. This knowledge could potentially be used to engineer HBGase II to improve its efficiency.


Assuntos
Abelhas/enzimologia , Domínio Catalítico/genética , Proteínas de Insetos/genética , Maltose/metabolismo , alfa-Glucosidases/genética , Substituição de Aminoácidos , Animais , Abelhas/genética , Proteínas de Insetos/metabolismo , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica/genética , Engenharia de Proteínas/métodos , Homologia de Sequência de Aminoácidos , Especificidade por Substrato/genética , alfa-Glucosidases/metabolismo
13.
Heliyon ; 6(3): e03638, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32215336

RESUMO

BACKGROUND: Ozone deterioration in the atmosphere has become a severe problem causing overexposure of ultraviolet light, which results in humans in melanin overproduction and can lead to many diseases, such as skin cancer and melasma, as well as undesirable esthetic appearances, such as freckles and hyperpigmentation. Although many compounds inhibit melanin overproduction, some of them are cytotoxic, unstable, and can cause skin irritation. Thus, searching for new natural compounds with antityrosinase activity and less/no side effects is still required. Here, bee pollen derived from sunflower (Helianthus annuus L.) was evaluated. MATERIALS AND METHODS: Sunflower bee pollen (SBP) was collected from Apis mellifera bees in Lopburi province, Thailand in 2017, extracted by methanol and sequentially partitioned with hexane and dichloromethane (DCM). The in vitro antityrosinase activity was evaluated using mushroom tyrosinase and the half maximal inhibitory concentration (IC50) is reported. The antioxidation activity was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and reported as the half maximal effective concentration. Two pure compounds with antityrosinase activity were isolated by silica gel 60 column chromatography (SG60CC) and high performance liquid chromatography (HPLC), and their chemical structure deduced by Nuclear Magnetic Resonance (NMR) analysis. RESULTS: The DCM partitioned extract of SBP (DCMSBP) had an antityrosinase activity (IC50, 159.4 µg/mL) and was fractionated by SG60CC, providing five fractions (DCMSBP1-5). The DCMSBP5 fraction was the most active (IC50 = 18.8 µg/mL) and further fractionation by HPLC gave two active fractions, revealed by NMR analysis to be safflospermidine A and B. Interestingly, both safflospermidine A and B had a higher antityrosinase activity (IC50 of 13.8 and 31.8 µM, respectively) than kojic acid (IC50 of 44.0 µM). However, fraction DCMSBP5 had no significant antioxidation activity, while fractions DCMSBP1-4 showed a lower antioxidation activity than ascorbic acid. CONCLUSION: Safflospermidine A and B are potential natural tyrosinase inhibitors.

14.
R Soc Open Sci ; 7(11): 200543, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33391780

RESUMO

α-Mangostin, the extract from pericarp of Garcinia mangostana L . or mangosteen fruit, has been applied in various biomedical products because of its minimal skin irritation, and prominent anti-inflammatory, antimicrobial and immune-modulating activities. Owing to its low water solubility, the particle formulations are necessary for the applications of α-mangostin in aqueous media. The particle formulations are usually prepared using surfactants and/or polymers, usually at a larger amount of these auxiliaries than the amount of α-mangostin itself. Here, we show the self-assembly of α-mangostin molecules into water-dispersible particles without a need of any polymers/surfactants. Investigations on chemical structure, crystallinity and thermal properties of the obtained α-mangostin particles, in comparison to the conventional α-mangostin crystalline solid, confirm no formation of the new compound during the particle formation and suggest changes in intermolecular interactions among α-mangostin molecules and significantly more hydroxyl functionality positioned at the particles' surface. The ability of the water suspension of the α-mangostin to inhibit the growth of Propionibacterium acnes, the acne-causing bacteria, is similar to that of the solution of the conventional α-mangostin in 5% dimethyl sulfoxide. Moreover, at 12.7 ppm in an aqueous environment of RAW 264.7 cell culture, α-mangostin suspension exhibits five times higher anti-inflammatory activity than the conventional α-mangostin solution, with the same acceptable cytotoxicity of less than 20% cell death.

15.
J Econ Entomol ; 113(1): 34-42, 2020 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-31769836

RESUMO

Domestication of animal species is often associated with a reduction in genetic diversity. The honey bee, Apis mellifera Linnaeus, 1758, has been managed by beekeepers for millennia for both honey and wax production and for crop pollination. Here we use both microsatellite markers and sequence data from the mitochondrial COI gene to evaluate genetic variation of managed A. mellifera in Thailand, where the species is introduced. Microsatellite analysis revealed high average genetic diversity with expected heterozygosities ranging from 0.620 ± 0.184 to 0.734 ± 0.071 per locus per province. Observed heterozygosities were generally lower than those expected under Hardy-Weinberg equilibrium, both locally and across the population as a whole. Mitochondrial sequencing revealed that the frequency of two evolutionary linages (C-Eastern European and O-Middle Eastern) are similar to those observed in a previous survey 10 yr ago. Our results suggest that Thai beekeepers are managing their A. mellifera in ways that retain overall genetic diversity, but reduce genetic diversity between apiaries.


Assuntos
Himenópteros , Animais , Abelhas , Variação Genética , Repetições de Microssatélites , Polinização , Tailândia
16.
Toxicol Res ; 35(2): 167-179, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31015899

RESUMO

Ovarian cancer is the fifth main cause of pre-senescent death in women. Although chemotherapy is generally an efficient treatment, its side effects and the occurrence of chemotherapeutic resistance have prompted the need for alternative treatments. In this study, α-mangostin and apigenin were evaluated as possible anticancer alternatives to the chemotherapeutic drug doxorubicin, used herein as a positive control. The ovarian adenocarcinoma cell line SKOV-3 (ATCC No. HTB77) was used as model ovarian cancer cells, whereas the skin fibroblast line CCD-986Sk (ATCC No. CRL-1947) and lung fibroblast line WI-38 (ATCC No. CCL-75) were used as model untransformed cells. Apigenin and doxorubicin inhibited the growth of SKOV-3 cells in a dose- and time-dependent manner. After 72 hr exposure, doxorubicin was mostly toxic to SKOV-3 cells, whereas apigenin was toxic to SKOV-3 cells but not CCD-986Sk and WI-38 cells. α-Mangostin was more toxic to SKOV-3 cells than to CCD-986Sk cells. A lower cell density, cell shrinkage, and more unattached (floating round) cells were observed in all treated SKOV-3 cells, but the greatest effects were observed with α-mangostin. With regard to programmed cell death, apigenin caused early apoptosis within 24 hr, whereas α-mangostin and doxorubicin caused late apoptosis and necrosis after 72 hr of exposure. Caspase-3 activity was significantly increased in α-mangostin-treated SKOV-3 cells after 12 hr of exposure, whereas only caspase-9 activity was significantly increased in apigenin-treated SKOV-3 cells at 24 hr. Both α-mangostin and apigenin arrested the cell cycle at the G2/M phase, but after 24 and 48 hr, respectively. Significant upregulation of BCL2 (apoptosis-associated gene) and COX2 (inflammation-associated gene) transcripts was observed in apigenin- and α-mangostin-treated SKOV-3 cells, respectively. α-Mangostin and apigenin are therefore alternative options for SKOV-3 cell inhibition, with apigenin causing rapid early apoptosis related to the intrinsic apoptotic pathway, and α-mangostin likely being involved with inflammation.

17.
Asian Pac J Cancer Prev ; 19(12): 3427-3434, 2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30583665

RESUMO

Background: Bronchogenic carcinoma (lung cancer) is one of the leading causes of death. Although many compounds isolated from natural products have been used to treat it, drug resistance is a serious problem, and alternative anti-cancer drugs are required. Here, melittin from Apis mellifera venom was used, and its effects on bronchogenic carcinoma cell proliferation and tumour-associated macrophage differentiation were evaluated. Methods: The half maximal inhibitory concentration (IC50) of melittin was measured by MTT. Cell death was observed by annexin V and propidium iodide (PI) co-staining followed by flow cytometry. Cell cycle arrest was revealed by PI staining and flow cytometry. To investigate the tumour microenvironment, differentiation of circulating monocytes (THP-1) into tumour-associated macrophages (TAMs) was assayed by sandwich-ELISA and interleukin (IL)-10 levels were determined. Cell proliferation and migration was observed by flat plate colony formation. Secretion of vascular endothelial growth factor (VEGF) was detected by ELISA. The change in expression levels of CatS, Bcl-2, and MADD was measured by quantitative RT-PCR. Results: Melittin was significantly more cytotoxic (p < 0.01) to human bronchogenic carcinoma cells (ChaGo-K1) than to the control human lung fibroblasts (Wi-38) cells. At 2.5 µM, melittin caused ChaGo-K1 cells to undergo apoptosis and cell cycle arrest at the G1 phase. The IL-10 levels showed that melittin significantly inhibited the differentiation of THP-1 cells into TAMs (p < 0.05) and reduced the number of colonies formed in the treated ChaGo-K1 cells compared to the untreated cells. However, melittin did not affect angiogenesis in ChaGo-K1 cells. Unlike MADD, Bcl-2 was up-regulated significantly (p < 0.05) in melittin-treated ChaGo-K1 cells. Conclusion: Melittin can be used as an alternative agent for lung cancer treatment because of its cytotoxicity against ChaGo-K1 cells and the inhibition of differentiation of THP-1 cells into TAMs.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Broncogênico/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Meliteno/farmacologia , Células THP-1/efeitos dos fármacos , Carcinoma Broncogênico/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Humanos , Interleucina-10/metabolismo , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células THP-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
PLoS One ; 13(6): e0198484, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29864156

RESUMO

Honey from the European honeybee, Apis mellifera, is produced by α-glucosidases (HBGases) and is widely used in food, pharmaceutical, and cosmetic industries. Categorized by their substrate specificities, HBGases have three isoforms: HBGase I, II and III. Previous experimental investigations showed that wild-type HBGase III from Apis mellifera (WT) preferred sucrose to maltose as a substrate, while the Y227H mutant (MT) preferred maltose to sucrose. This mutant can potentially be used for malt hydrolysis because it can efficiently hydrolyze maltose. In this work, to elucidate important factors contributing to substrate specificity of this enzyme and gain insight into how the Y227H mutation causes substrate specificity change, WT and MT homology models were constructed, and sucrose/maltose was docked into active sites of the WT and MT. AMBER14 was employed to perform three independent molecular dynamics runs for these four complexes. Based on the relative binding free energies calculated by the MM-GBSA method, sucrose is better than maltose for WT binding, while maltose is better than sucrose for MT binding. These rankings support the experimentally observed substrate specificity that WT preferred sucrose to maltose as a substrate, while MT preferred maltose to sucrose, suggesting the importance of binding affinity for substrate specificity. We also found that the Y227H mutation caused changes in the proximities between the atoms necessary for sucrose/maltose hydrolysis that may affect enzyme efficiency in the hydrolysis of sucrose/maltose. Moreover, the per-residue binding free energy decomposition results show that Y227/H227 may be a key residue for preference binding of sucrose/maltose in the WT/MT active site. Our study provides important and novel insight into the binding of sucrose/maltose in the active site of Apis mellifera HBGase III and into how the Y227H mutation leads to the substrate specificity change at the molecular level. This knowledge could be beneficial in the design of this enzyme for increased production of desired products.


Assuntos
Proteínas de Insetos/metabolismo , Simulação de Dinâmica Molecular , alfa-Glucosidases/metabolismo , Animais , Abelhas , Sítios de Ligação , Domínio Catalítico , Ligação de Hidrogênio , Hidrólise , Proteínas de Insetos/genética , Maltose/química , Maltose/metabolismo , Polimorfismo de Nucleotídeo Único , Especificidade por Substrato , Sacarose/química , Sacarose/metabolismo , Termodinâmica , alfa-Glucosidases/genética
19.
Exp Biol Med (Maywood) ; 243(15-16): 1212-1219, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30602309

RESUMO

IMPACT STATEMENT: α-Mangostin has been reported to have anticancer properties both in vitro and in vivo models. Although there are several studies that evaluated the toxicity of the compound in rodent models, we are the first to evaluate the teratogenicity of α-mangostin. In the present work, we found that α-mangostin induced mortality and malformations in zebrafish embryos. In addition, we exhibited that the compound also disrupted the reactive oxygen species and hemoglobin levels. These findings suggest that α-mangostin may possibly cause the same adverse effects on human health. The mechanisms of these toxicological effects of the compound will be further elucidated and the effects found in zebrafish embryos need to be verified in other animal models.

20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-700159

RESUMO

Objective: To find new compounds in order to overcome the mainstay of metastatic breast cancer due to the adverse side effects from, and increasing resistance to, current chemotherapeutic agents. Methods: α-Mangostin and apigenin were reported in comparison to doxorubicin, a chemotherapeutic drug. Ductal carcinoma (BT474) cell line and non-tumorigenic epithelial tissue from mammary gland (MCF-10A) were used. Cell viability assessment was calculated by the standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Cell morphology was investigated by light microscopy. By flow cytometry analysis, programmed cell death was observed using annexin Ⅴ and propidium iodide staining while cell-cycle arrest was observed using propidium iodide staining. Change in transcriptional expression was evaluated by real-time quantitative reverse transcription PCR. Results: In 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, the result revealed α-mangostin and apigenin were more cytotoxic to BT474 cells. Longer exposure times to α-mangostin and apigenin caused more floating cells and a lower density of adhered cells with more vacuoles present in the colonies in BT474 only. α-Mangostin and apigenin caused necrosis in BT474 cells in a 24 h exposure, but a small amount of early apoptotic cells could also be detected at 24, 48 and 72 h exposure, whereas doxorubicin caused early apoptosis to BT474 cells at 24 h. Transcript expression and activity analysis supported caspase-3 was involved in the death of BT474 cells treated by all compounds. Moreover, α-mangostin and apigenin arrested the cell-cycle at the G1-phase, but at the G2/M-phase by doxorubicin. All three compounds induced a change in transcript expression levels of inflammation-associated, proto-oncogene, autophagy-associated and apoptosis-associated genes. Conclusions: α-Mangostin and apigenin are worth investigating as potential new sources of chemotherapeutic agents for breast cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...