Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38372944

RESUMO

BACKGROUND: An increasing incidence of colorectal cancer (CRC) is being reported in developing countries, including India. Most Indian studies on CRC are retrospective and single-centered. The present study is an attempt to understand the current clinical profile and stage of newly diagnosed CRCs across multiple centers in Tamil Nadu, India. METHODS: A multi-centric observational survey was conducted between September 1, 2021, and August 31, 2022, under the aegis of the Indian Society of Gastroenterology - Tamil Nadu chapter. Patients 18 years of age and older with a recent diagnosis of CRC fulfilling the inclusion criteria were prospectively recruited at the participating centers. Their demographic, clinical, biochemical, endoscopic, histopathologic, radiologic and risk factor details were systematically collected and analyzed. RESULTS: Across 23 centers in Tamil Nadu, 1208 patients were recruited. The male:female ratio was 1.49:1, while mean (SD) age was 57.7 (13.5) years. A majority (81.9%) were Tamils and 78.5% belonged to lower socioeconomic classes. The predominant symptoms were hematochezia (30.2%) and a change in bowel habits (27.5%). The most common locations were the rectum (34.3%) and rectosigmoid (15.1%). Synchronous CRCs were seen in 3.3% and synchronous colorectal polyps in 12.8%. Predisposing factors for CRC were seen in 2%. A past history of any cancer among CRC patients was obtained in 3.1% and a family history of any cancer was found in 7.6%. Patients who were either overweight or obese constituted 46.4% of the study population. At presentation, the predominant stages were stage III (44.7%) and stage IV (20.8%). CONCLUSIONS: A majority of patients with newly diagnosed CRC in Tamil Nadu belonged to the lower socioeconomic classes. About 60% had CRCs located within the reach of the flexible sigmoidoscope. Two-thirds of the patients exceeded stage II disease at presentation. TRIAL REGISTRATION: Not applicable.

2.
Chemosphere ; 311(Pt 1): 136875, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36270527

RESUMO

Triclosan (TC) is one of the threats to the environment due to its bioaccumulative nature, persistency, combined toxicity in aquatic biota, and endocrine-disrupting nature. This study revealed the removal of TC via three distinct setups of vertical flow constructed wetlands (VFCW: B-VFCW (with biochar); PB-VFCW (with plant Colocasia and biochar); C-VFCW (without biochar but with plant)) operated with normal flow and tidal-flow (flooding/drying cycles of 72 h/24 h: B-TFCW; PB-TFCW; C-TFCW) mode for 216 h of the operation cycle. The effluent was analyzed for changes in TC load and wastewater parameters (COD, NO3-N, NH4+-N, and DO). TC reduction efficiency (%) was found to be higher in PB-TFCW (98.41) followed by, C-TFCW (82.41), B-TFCW (77.51), PB-VFCW (71.83), C-VFCW (64.25), and B-VFCW (52.19) (p < 0.001). Reduction efficiency for COD (29-75 - 53.10%), and NH4+-N (86.5-97.9%) was better in TFCWs than that of setups with a normal mode of operation. TFCWs showed higher DO (3.87-4.89 mg L-1) during the operation period than that of VFCWs. The toxic impact of TC in plant stand was also assessed and results suggested low phototoxic and oxidative enzyme activities (catalase, CAT; superoxide dismutase, SOD; hydrogen peroxide, H2O2; malondialdehyde, MDA) in TFCWs. In summary, biochar addition and tidal flow operation played a significant role in oxidative- and microbial-mediated removals of TC in wastewater. This study provides an alternative strategy for the efficient removals of TC in constructed wetland systems and new insights into the toxic impact of pharmaceuticals on wetland plants.


Assuntos
Triclosan , Áreas Alagadas , Bovinos , Animais , Águas Residuárias , Triclosan/toxicidade , Eliminação de Resíduos Líquidos/métodos , Peróxido de Hidrogênio , Nitrogênio , Desnitrificação
3.
Chemosphere ; 307(Pt 2): 135975, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35944676

RESUMO

Pharmaceuticals (PCs) residues are considered an emerging threat to the environment due to their persistency, ecotoxicity and bioaccumulative nature. To study the PC (amoxicillin, AMX; caffeine, CF; ibuprofen, IBU) removal efficiency of vertical flow constructed wetland (VFCW), three setups of VFCWs were configured: SB (substrate matrix + biochar (BC)); SBP (substrate matrix + BC + plant); SP (substrate matrix + plant) and changes in effluent PC load was estimated at 24, 48, 72, 96, 120, 144 and 168 h intervals. SBP with an influent load of 1,000 µg L-1 showed the maximum removals of 75.51% (AMX), 87.53% (CF), and 79.93% (IBU) significantly higher than that of SB and SP (p < 0.00). Results showed an inverse relationship between removal efficacy and influent PCs loading. The average removal (%) by VFCWS (of all studied setups) was in the order: 66.20 > 47.88 > 39.0 (IBU), 56.56 > 42.12 > 34.36 (AMX), and 74.13 > 64.0 > 52.07 (CF) with 1,000, 5,000 > 10,000 µg L-1 influent load, respectively. The maximum removal of COD, NH4+-N, and NO3-N was recorded at 88.8%, 83.1%, and 64.9%, respectively in SBP, and their removal was hardly affected by influent PC concentration. In summary, planted VFCW spiked with BC could be a viable approach for the removal of PCs in wastewater. The impact of PC load on plant toxicity in VFCWs can be taken as a research problem for future work in this series.


Assuntos
Águas Residuárias , Áreas Alagadas , Amoxicilina , Baías , Cafeína , Carvão Vegetal , Ibuprofeno , Nitrogênio/química , Preparações Farmacêuticas , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
4.
Chemosphere ; 307(Pt 2): 135889, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35944681

RESUMO

The use of low-cost substances such as biochar could be a sustainable approach to reduce the mobility, accumulation, and toxic impact of heavy metals in crop systems. This study investigates the effect of biochar amendment on heavy metal (Cr, Cd, Cu, Pb, Ni, Zn, Mg and Fe) mobility, bioaccumulation factor (BAF), plant (wheat) metal-uptake, plant oxidative stress, and soil enzymatic profile in contaminated industrial soil. Biochar was obtained from slow pyrolysis of Lantana (LBC), and Parthenium (PBC) biomass, and applied at 3% rates in contaminated soils for wheat crop study under a greenhouse experimental setup. Results show in comparison with control setups, low mobility of Cr (14.15-16.35%), Cd (7.17-15.24%), Cu (9.81-12.97%), Pb (7.99-15.23%), Ni (1.52-2.38%), Zn (10.47-14.42%), Mg (48.85-52.89%), and Fe (19.13-19.90%) contents in soils. The heavy metal uptake rates were 63.08% (Cr), 78.07% (Cd), 74.61% (Cu), 78.11% (Pb), 75.73% (Ni), 69.71% (Zn), 28.78% (Mg), and 49.26% (Fe) lower in biochar amendments, compared with the control treatments. Similarly, the biochar amended treatments exhibited low oxidative stress in wheat plants than control setups. In addition, soil enzymes (dehydrogenase, ß-glucosidase, alkaline phosphatase, and urease) alleviated in biochar amended soils indicating reduced toxicity of metals in experimental soils. In summary, this study indicates that biochar amendment in contaminated soils not only improves plant growth but also lowers the rates of soil and plant toxicity and metal bioavailability as well.


Assuntos
Celulases , Metais Pesados , Poluentes do Solo , Fosfatase Alcalina , Cádmio , Carvão Vegetal , Chumbo , Metais Pesados/análise , Metais Pesados/toxicidade , Oxirredutases , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Triticum , Urease
5.
Membranes (Basel) ; 12(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35736278

RESUMO

Electrospun nanofibres excel at air filtration owing to diverse filtration mechanisms, thereby outperforming meltblown fibres. In this work, we present an electrospun polylactide acid nanofibre filter media, FilterLayrTM Eco, displaying outstanding bactericidal and virucidal properties using Manuka oil. Given the existing COVID-19 pandemic, face masks are now a mandatory accessory in many countries, and at the same time, they have become a source of environmental pollution. Made by NanoLayr Ltd., FilterLayrTM Eco uses biobased renewable raw materials with products that have end-of-life options for being industrially compostable. Loaded with natural and non-toxic terpenoid from manuka oil, FilterLayr Eco can filter up to 99.9% of 0.1 µm particles and kill >99% of trapped airborne fungi, bacteria, and viruses, including SARS-CoV-2 (Delta variant). In addition, the antimicrobial activity, and the efficacy of the filter media to filtrate particles was shown to remain highly active following several washing cycles, making it a reusable and more environmentally friendly option. The new nanofibre filter media, FilterLayrTM Eco, met the particle filtration efficiency and breathability requirements of the following standards: N95 performance in accordance with NIOSH 42CFR84, level 2 performance in accordance with ASTM F2100, and level 2 filtration efficiency and level 1 breathability in accordance with ASTM F3502. These are globally recognized facemask and respirator standards.

6.
Sci Total Environ ; 833: 155110, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35398125

RESUMO

This study compiles the results of phycoremediation of milk processing wastewater (MPWW) and production of lipid-rich Chlorella vulgaris biomass using a continuous batch system operated for 12-wks. After a 4-wks interval, a new MPWW was loaded photobioreactor to provide appropriate nutrient supply to algae. Results indicated that MPWW supported the algal growth efficiently and the maximum algal growth was recorded in the ranges of 400.36 to 421.58 mg L-1 during 4-wk's of the cultivation cycle. Average reduction in total nitrogen, TN (45.82-69.18%); nitrate, NO3 (93.32-94.54%); total ammonium nitrogen, TAN (92.94-94.54%); sulphate, SO4-2 (85.13-87.34%); total phosphorus (75.09-78.78%); and biochemical oxygen demands, BOD (89.53-92.40%) was recorded during 12-wks phycoremediation of MPWW. Harvested algal biomass (dry weight basis, DW) exhibited a significant content of total sugar (45.5%) and total lipid (39.7%). The lipid profiling results indicated the presence of palmitic acid (39.9%), oleic acid (21.08%), linoleic acid (13.13%), and other C18 compounds in algal biomass, suggesting the suitability of MPWW for Chlorella vulgaris cultivations. Algal biomass exhibited a high heating value (MJ/Kg of DW) in the range of 17.3 to 25.1, comparable to other lignocellulose biomass to be used for bioenergy purposes. Results of this study indicate that MPWW could be utilized as a valuable medium for Chlorella vulgaris cultivation under a circular economy approach: wastewater treatment and bioenergy feedstock production. The effect of controlled environmental conditions on algal growth behavior and lipid composition in biomass, while using MPWW as a medium, could be investigated in future studies.


Assuntos
Chlorella vulgaris , Microalgas , Animais , Biomassa , Meios de Cultura/química , Lipídeos/química , Leite/química , Nitrogênio/análise , Águas Residuárias
7.
Chemosphere ; 286(Pt 2): 131742, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34352544

RESUMO

Dissolved oxygen (DO) and carbon stock in substrate medium play a vital role in the nutrient removal mechanism in a constructed wetland (CW). This study compiles the results of dynamics of DO, ammonium N (NH4+-N), nitrate (NO3-N), sulfate (SO4-2), phosphate (PO4-3), chemical oxygen demand (COD), in three setups of vertical-flow constructed wetlands (TFCWs) (SB: substrate + biochar; SBP: substrate + biochar + Colocasia esculenta plantation; SP: substrate + Colocasia esculenta (SP), operated with tidal flow cycles. Experimental analyses illustrated the continuous high DO level (2.743-5.66 mg L-1) in SB and SBP after the I and II cycle of tidal flow (72 h flooding and 24 h dry phase). COD reduction efficiencies increased from 15.75 - 61.86% to 48.55-96.80% after tidal operation among operating TFCWs. N (NH4+-N) and N (NO3-N) removal were found to be 88.16%, and 76.02%; 49.32, and 57.85%; and 40.23%, and 48.94 % in SBP, SP and SB, respectively. The theory of improved nitrification and adsorption through biochar amended substratum was proposed for TFCW systems. PO4-3 and SO4-2 removal improved from 22.63 to 80.50%, and 19.69 to 75.20%, respectively after first tidal operation in all TFCWs. The microbial inhabitation on porous biochar could promote the transformation of available P into microbial biomass and also helped by the plant uptake process while SO4-2 reduction in TFCWs could be mainly due to sulfate-reducing bacterial activity and nitrate reduction process, mainly facilitated by high DO and biochar addition in such setups. The study suggests that effluent re-circulation through tidal operation and biochar supplementation in the substratum could be an effective mechanism for the improvement of the working efficiencies of CWs operated with low energy input systems.


Assuntos
Águas Residuárias , Áreas Alagadas , Carvão Vegetal , Desnitrificação , Nitrogênio/análise , Nutrientes , Eliminação de Resíduos Líquidos
8.
Polymers (Basel) ; 13(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34641073

RESUMO

Electrospun nanofibres can outperform their melt-blown counterparts in many applications, especially air filtration. The different filtration mechanisms of nanofibres are particularly important when it comes to the air filtration of viruses (such as COVID-19) and bacteria. In this work, we present an electrospun nanofibre filter media, FilterLayrTM by NanoLayr Ltd., containing poly(methyl methacrylate)/ethylene vinyl alcohol nanofibres. The outstanding uniformity of the nanofibres was indicated by the good correlation between pressure drop (ΔP) and areal weight with R2 values in the range of 0.82 to 0.98 across various test air velocities. By adjusting the nanofibre areal weight (basis weight), the nanofibre filter media was shown to meet the particle filtration efficiency and breathability requirements of the following internationally accepted facemask and respirator standards: N95 respirator facemask performance in accordance with NIOSH 42CFR84 (filtration efficiency of up to 98.10% at a pressure drop of 226 Pa and 290 Pa at 85 L·min-1 and 120 L·min-1, respectively), Level 2 surgical facemask performance in accordance with ASTM F2299 (filtration efficiency of up to 99.97% at 100 nm particle size and a pressure drop of 44 Pa at 8 L·min-1), and Level 2 filtration efficiency and Level 1 breathability for barrier face coverings in accordance with ASTM F3502 (filtration efficiency of up to 99.68% and a pressure drop of 133 Pa at 60 L·min-1), with Level 2 breathability being achievable at lower nanofibre areal weights.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...