Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Omega ; 8(44): 41054-41063, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37970029

RESUMO

Poly(vinyl alcohol) (PVA), a naturally occurring and rapidly decomposing polymer, has gained significant attention in recent studies for its potential use in pollution preventive materials. Its cost-effectiveness and ease of availability as well as simple processing make it a suitable material for various applications. However, the only concern about PVA's applicability to various applications is its hydrophilic nature. To address this limitation, PVA-based nanocomposites can be created by incorporating inorganic fillers such as graphene (G). Graphene is a two-dimensional carbon crystal with a single atom-layer structure and has become a popular choice as a nanomaterial due to its outstanding properties. In this study, we present a simple and environmentally friendly solution processing technique to fabricate PVA and graphene-based nanocomposite films. The resulting composite films showed noticeable improvement in barrier properties against moisture, oxygen, heat, and mechanical failures. The improvement of the characteristic properties is attributed to the uniform dispersion of graphene in the PVA matrix as shown in the SEM image. The addition of graphene leads to a decrease in water vapor transmission rate (WVTR) by 79% and around 90% for the oxygen transmission rate (OTR) as compared to pristine PVA films. Notably, incorporating just 0.5 vol % of graphene results in an OTR value of as low as 0.7 cm m-2 day-1 bar-1, making it highly suitable packaging applications. The films also exhibit remarkable flexibility and retained almost the same WVTR values even after going through tough bending cycles of more than 2000 at a bending radius of 2.5 cm. Overall, PVA/G nanocomposite films offer promising potential for PVA/G composite films for various attractive pollution prevention (such as corrosion resistant coatings) and packaging applications.

2.
Molecules ; 28(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37764280

RESUMO

Green approaches for nanoparticle synthesis have emerged as biocompatible, economical, and environment-friendly alternatives to counteract the menace of microbial drug resistance. Recently, the utilization of honey as a green source to synthesize Fe2O3-NPs has been introduced, but its antibacterial activity against one of the opportunistic MDR pathogens, Klebsiella pneumoniae, has not been explored. Therefore, this study employed Apis mellifera honey as a reducing and capping agent for the synthesis of iron oxide nanoparticles (Fe2O3-NPs). Subsequent to the characterization of nanoparticles, their antibacterial, antioxidant, and anti-inflammatory properties were appraised. In UV-Vis spectroscopic analysis, the absorption band ascribed to the SPR peak was observed at 350 nm. XRD analysis confirmed the crystalline nature of Fe2O3-NPs, and the crystal size was deduced to be 36.2 nm. Elemental analysis by EDX validated the presence of iron coupled with oxygen in the nanoparticle composition. In ICP-MS, the highest concentration was of iron (87.15 ppm), followed by sodium (1.49 ppm) and other trace elements (<1 ppm). VSM analysis revealed weak magnetic properties of Fe2O3-NPs. Morphological properties of Fe2O3-NPs revealed by SEM demonstrated that their average size range was 100-150 nm with a non-uniform spherical shape. The antibacterial activity of Fe2O3-NPs was ascertained against 30 clinical isolates of Klebsiella pneumoniae, with the largest inhibition zone recorded being 10 mm. The MIC value for Fe2O3-NPs was 30 µg/mL. However, when mingled with three selected antibiotics, Fe2O3-NPs did not affect any antibacterial activity. Momentous antioxidant (IC50 = 22 µg/mL) and anti-inflammatory (IC50 = 70 µg/mL) activities of Fe2O3-NPs were discerned in comparison with the standard at various concentrations. Consequently, honey-mediated Fe2O3-NP synthesis may serve as a substitute for orthodox antimicrobial drugs and may be explored for prospective biomedical applications.


Assuntos
Mel , Abelhas , Animais , Antioxidantes/farmacologia , Estudos Prospectivos , Antibacterianos/farmacologia , Ferro , Klebsiella pneumoniae , Nanopartículas Magnéticas de Óxido de Ferro
3.
Gels ; 9(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36661830

RESUMO

Herein, polymeric cryogels containing poly(N-isopropylacrylamide) were synthesized by cryo-polymerization at subzero temperature. The synthesized cryogels were loaded with silver and palladium nanoparticles by the chemical reduction method at room temperature using the reducing agent NaBH4. Moreover, for comparison with cryogels, pure poly(N-isopropylacrylamide) hydrogel and its silver hybrid were also prepared by the conventional method at room temperature. The chemical structure and functional group analysis of the pure cryogels was confirmed by Fourier transform infrared spectroscopy. The synthesis of hybrid cryogels was confirmed by the X-ray diffraction technique and energy dispersive X-ray. The pore size and surface morphology of the pure cryogels, their respective hybrid cryogels and of conventional hydrogels were studied by using the scanning electron microscopy technique. The hybrid cryogels were successfully used as a catalyst for the degradation of methyl orange dye. The degradation performance of the hybrid cryogels was much better than its counterpart hybrid hydrogel for methyl orange dye. The effect of temperature and amount of catalyst on catalytic performance was studied by UV-visible spectroscopy. The reduction follows pseudo-first-order reaction kinetics. In addition, the antibacterial activities of these cryogels were evaluated against Gram-positive bacteria (Staphylococcus aureus, ATCC: 2593) and Gram-negative bacteria (Escherichia coli, ATCC: 25922). Both hybrid cryogels have shown much better antibacterial activity for these two strains of bacteria compared to pure cryogels. The results indicate that these cryogels are potential candidates for water purification systems as well as biomedical applications.

4.
Molecules ; 28(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36677801

RESUMO

Nickel-supported hierarchical zeolite catalysts were prepared through a desilication reassembly process under optimized conditions and applied in one-pot menthol synthesis. In this work, the hierarchical zeolite-supported metal bifunctional catalysts were prepared with the help of desilication re-assembly and wetness impregnation techniques and applied in menthol synthesis via citral hydrogenation. The prepared catalysts were characterized using PXRD, BET, FE-TEM, NH3-TPD, H2-TPR, pyridine adsorption, and ICP-OES techniques. As a result, the physicochemical and acidic properties, such as mesopore surface area, metal dispersion, acidity, catalytic activity, and strong Lewis acid sites of pure microporous ZSM-5/USY zeolites, were significantly improved. Consequently, with the occurrence of superior physicochemical and acidic properties, the Ni/HZ-0.5 M catalyst exhibited outstanding catalytic activity (100% conversion, TOF 7.12 h-1) and menthol selectivity (83%, 4 h) with uniform stability at 100 °C, 1.0 MPa hydrogen. Similarly, the cracking rate decreased with the decrease in Bronsted acid sites.

5.
RSC Adv ; 12(51): 32986-32993, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36425176

RESUMO

A ternary oxide nanocomposite based on Bi2O3/MgO/GO was prepared using a co-precipitation method for photoconductive device applications. The structure and morphology of the as-prepared nanocomposite were characterized analytically using X-ray diffraction (XRD), scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS) techniques, and optical characterization was made using Fourier-transform infrared (FTIR) spectroscopy, photoluminescence (PL), and UV-vis spectroscopy techniques. The heterostructure of the crystal with a crystallite size of 28.064 nm and the purity of the phase are depicted by XRD patterns. Scanning electron microscopy revealed its morphology showing an average grain size of 0.27 µm, and the purity of the nanocomposite was confirmed by EDS, which showed the presence of Mg, Bi, C, and O. The band gap of the Bi2O3/MgO/GO nanocomposite was 4.02 eV by PL comparable with 5.718 eV by UV-vis spectroscopy, which evidenced that the material may have potential applications in far UVC emissive devices. The zeta potential observed was 48.0 mV, indicating the stability of the ternary nanocomposite.

6.
Polymers (Basel) ; 14(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36433147

RESUMO

Starch and gelatin are natural biopolymers that offer a variety of benefits and are available at relatively low costs. In addition to this, they are an appealing substitute for synthetic polymers for the manufacturing of packaging films. Such packaging films are not only biodegradable but are also edible. Moreover, they are environmentally friendly and remain extremely cost-effective. In lieu of this, films made from fish gelatin and cornstarch have been the subject of several experiments. The pristine gelatin films have poor performance against water diffusion but exhibit excellent flexibility. The goal of this study was to assess the performance of pristine gelatin films along with the addition of food plasticizers. For this purpose, solutions of gelatin/cornstarch were prepared and specified quantities of food colors/plasticizers were added to develop different shades. The films were produced by using a blade coating method and were characterized by means of their shaded colors, water vapor transmission rate (WVTR), compositional changes via Fourier transform infrared spectroscopy (FTIR), hardness, bendability, transparency, wettability, surface roughness, and thermal stability. It was observed that the addition of several food colors enhanced the moisture blocking effect, as a 10% reduction in WVTR was observed in the shaded films as compared to pristine films. The yellow-shaded films exhibited the lowest WVTR, i.e., around 73 g/m2·day when tested at 23 °C/65%RH. It was also observed that the films' WVTR, moisture content, and thickness were altered when different colors were added into them, although the chemical structure remained unchanged. The mechanical properties of the shaded films were improved by a factor of two after the addition of colored plasticizers. Optical examination and AFM demonstrated that the generated films had no fractures and were homogeneous, clear, and shiny. Finally, a biscuit was packaged in the developed films and was monitored via shore hardness. It was observed that the edible packed sample's hardness remained constant even after 5 days. This clearly suggested that the developed films have the potential to be used for packaging in various industries.

7.
Nanomaterials (Basel) ; 12(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364695

RESUMO

Aluminum nitride (AlN) is a semiconductor material possessing a hexagonal wurtzite crystal structure with a large band gap of 6.2 eV. AlN thin films have several potential applications and areas for study, particularly in optoelectronics. This research study focused on the preparation of Ni-doped AlN thin films by using DC and RF magnetron sputtering for optoelectronic applications. Additionally, a comparative analysis was also carried out on the as-deposited and annealed thin films. Several spectroscopy and microscopy techniques were considered for the characterization of structural (X-ray diffraction), morphological (SEM), chemical bonding (FTIR), and emission (PL spectroscopy) properties. The XRD results show that the thin films have an oriented c-axis hexagonal structure. SEM analysis validated the granular-like morphology of the deposited sample, and FTIR results confirm the presence of chemical bonding in deposited thin films. The photoluminescence (PL) emission spectra exhibit different peaks in the visible region when excited at different wavelengths. A sharp and intense photoluminescence peak was observed at 426 nm in the violet-blue region, which can be attributed to inter-band transitions due to the incorporation of Ni in AlN. Most of the peaks in the PL spectra occurred due to direct-band recombination and indirect impurity-band recombination. After annealing, the intensity of all observed peaks increases drastically due to the development of new phases, resulting in a decrease in defects and a corresponding increase in the crystallinity of the thin film. The observed structural, morphological, and photoluminescence results suggest that Ni: AlN is a promising candidate to be used in optoelectronics applications, specifically in photovoltaic devices and lasers.

8.
Nanomaterials (Basel) ; 12(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36296761

RESUMO

Wastewater from the textile industry is chronic and hazardous for the human body due to the presence of a variety of organic dyes; therefore, its complete treatment requires efficient, simple, and low cost technology. For this purpose, we grew ZnO microstructures in the presence of psyllium husk, and the role of psyllium husk was to modify the surface of the ZnO microstructures, create defects in the semiconducting crystal structures, and to alter the morphology of the nanostructured material. The growth process involved a hydrothermal method followed by calcination in air. Additionally, the psyllium husk, after thermal combustion, added a certain value of carbon into the ZnO nanomaterial, consequently enhancing the photocatalytic activity towards the degradation of methylene blue. We also investigated the effect of varying doses of photocatalyst on the photocatalytic properties towards the photodegradation of methylene blue in aqueous solution under the illumination of ultraviolet light. The structure and morphology of the prepared ZnO microstructures were explored by scanning electron microscopy (SEM) and powder X-ray diffraction (XRD) techniques. The degradation of methylene blue was monitored under the irradiation of ultraviolet light and in the dark. Also, the degradation of methylene blue was measured with and without photocatalyst. The photodegradation of methylene blue is highly increased using the ZnO sample prepared with psyllium husk. The photodegradation efficiency is found to be approximately 99.35% for this sample. The outperforming functionality of psyllium-husk-assisted ZnO sample is attributed to large surface area of carbon material from the psyllium husk and the synergetic effect between the incorporated carbon and ZnO itself. Based on the performance of the hybrid material, it is safe to say that psyllium husk has high potential for use where surface roughness, morphology alteration, and defects in the crystal structure are vital for the enhancing the functionality of a nanostructured material. The observed performance of ZnO in the presence of psyllium husk provides evidence for the fabrication of a low cost and efficient photocatalyst for the wastewater treatment problems.

9.
Nanomaterials (Basel) ; 12(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014631

RESUMO

The present study describes the use of a leaf extract from Ficus carica as a source of natural antioxidants for the surface alteration of bulk titanium dioxide (TiO2) in two steps. First, the hydro-thermal treatment of the bulk TiO2 material was carried out and followed by thermal annealing at 300 °C for 3 h in air. The role of the leaf extract of Ficus carica on the performance of the bulk TiO2 material for the removal of methylene blue (MB) was also studied. Various analytical techniques such as powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were used to explore the crystalline structure, morphology, and composition. The bulk TiO2 material after the leaf-extract treatment exhibited mixed anatase and rutile phases, a flower-like morphology, and Ti, O, and C were its main elements. The average crystallite size was also calculated, and the obtained values for the bulk TiO2 material, 18.11 nm, and the treated bulk TiO2 material with various amounts, 5, 10, and 15 mL, of leaf extract were 16.4, 13.16, and 10.29 nm respectively. Moreover, Fourier-transform infrared spectroscopy validated the typical metal-oxygen bonds and strengthened the XRD results. The bulk TiO2 material chemically treated with Ficus carica has shown outstanding activity towards the degradation of MB under sunlight. The 15 mL of Ficus carica extract significantly enhanced the photocatalytic activity of the bulk TiO2 material towards the degradation of MB. The dye degradation efficiency was found to be 98.8%, which was experimentally proven by the Fourier Transform Infrared spectroscopoyy (FTIR) analysis. The obtained performance of the bulk TiO2 material with Ficus carica revealed excellent surface modifying properties for poorly-performing photocatalysts towards the degradation of synthetic dyes when used in their pristine form. The presented approach suggests that Ficus carica could be of great interest for tuning the surface properties of materials, either in the form of nano-size or bulk-phase in a particular application.

10.
Membranes (Basel) ; 12(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35877904

RESUMO

The majority of food packaging materials are petroleum-based polymers, which are neither easily recyclable nor ecologically friendly. Packaging films should preferably be transparent, light in weight, and easy to process, as well as mechanically flexible, and they should meet the criteria for food encapsulation. In this study, poly (vinyl alcohol) (PVA)-based films were developed by incorporating glass flakes into the films. The selection of PVA was based on its well-known biodegradability, whereas the selection of glass flakes was based on their natural impermeability to oxygen and moisture. The films were processed using the blade coating method and were characterized in terms of transparency, oxygen transmission rate, mechanical strength, and flexibility. We observed that the incorporation of glass flakes into the PVA matrix did not significantly change the transparency of the PVA films, and they exhibited a total transmittance of around 87% (at 550 nm). When the glass flakes were added to the PVA, a significant reduction in moisture permeation was observed. This reduction was also supported and proven by Bhardwaj's permeability model. In addition, even after the addition of glass flakes to the PVA, the films remained flexible and showed no degradation in terms of the water vapor transmission rate (WVTR), even after bending cycles of 23,000. The PVA film with glass flakes had decent tensile characteristics, i.e., around >50 MPa. Increasing the concentration of glass flakes also increased the hardness of the films. Finally, a piece of bread was packaged in a well-characterized composite film. We observed that the bread packaged in the PVA film with glass flakes did not show any degradation at all, even after 10 days, whereas the bread piece packaged in a commercial polyethylene bag degraded completely. Based on these results, the developed packaging films are the perfect solution to replace commercial non-biodegradable films.

11.
Materials (Basel) ; 15(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35744245

RESUMO

The nickel aluminides are commonly employed as a bond coat material in thermal barrier coating systems for the components of aeroengines operated at very high temperatures. However, their lifetime is limited due to several factors, such as outward diffusion of substrate elements, surface roughness at high temperatures, morphological changes of the oxide layer, etc. For this reason, inter-diffusion migrations were studied in the presence and absence of nickel coating. In addition, a hot corrosion study was also carried out. Thus, on one set of substrates, nickel electrodeposition was carried out, followed by a high activity pack aluminizing process, while another set of substrates were directly aluminized. The microstructural, mechanical, and oxidation properties were examined using different characterization techniques, such as SEM-EDS, optical microscopy, XRD, optical emission spectroscopy, surface roughness (Ra), and adhesion tests. In addition, the variable oxidation temperatures were employed to better understand their influence on the roughness, degree of spallation (DoS), and morphology. The results show that AISI 304L substrates do not respond to aluminizing treatment, i.e., no aluminide coating was formed; rather, a nearly pure aluminum (or alloy) was observed on the substrate. On the contrary, successful formation of an aluminide coating was observed on the nickel-electrodeposited substrates. In particular, a minimum amount of migrations were noted, which is attributed to nickel coating. Moreover, the scratch test at 10 N load revealed neither cracking nor peeling off, thereby indicating good adhesion of the aluminide coating before oxidation. The as-aluminized samples were oxidized between 700 °C to 1100 °C in air for 8 h each. The degree of spallation showed an incremental trend as temperatures increased. Likewise, oxide morphologies showed temperature dependence. On the other hand, average surface roughness (from Ra = 2.3 µm to 5.8 µm) was also increased as temperatures rose. Likewise, the mass gain showed linearity as temperatures increased during oxidation. The hot corrosion responses of electrodeposited-aluminized samples were superior among all specimens. An extensive discussion is presented based on the observations noted above.

12.
Materials (Basel) ; 15(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35329656

RESUMO

For the protection of civil and military armored vehicles, advanced steels are used, due to their outstanding mechanical properties, high ballistic performance, ease of manufacturing and low cost. However, after retrofitting, weight is the prominent issue. In this regard, several strategies are being proposed, which include the surface engineering of either low-thickness ballistic steels or conventional steels, in addition to new alloys and composites. Therefore, to better understand the response of such materials under various stimuli, the existing state of the art ballistic steels was utilized in this study. The aim of this study was to better understand the existing materials and their corrosion behavior. Therefore, in this connection, two thicknesses were selected, i.e., thin (6.7-7.0 mm) and thick (13.0-15.0 mm), henceforth termed as low thickness (LT) and high thickness (HT), respectively. This was followed by characterization using tensile, Charpy, micro-Vickers, nanoindentation, XRD, SEM-EDS and corrosion tests. Microstructurally, the LT samples only exhibited ε-carbide precipitates, whereas the HT samples contained both ε-carbides and Mo2C (molybdenum carbides). However, both samples were found to be tempered martensite with a lath morphology. Moreover, higher hardness, and lower elastic modulus and stiffness were noticed in the HT samples compared with their LT counterparts. Fractured surfaces of both of these alloys were also examined, wherein a ductile mode of fracturing was observed. Further, a corrosion study was also carried out in brine solution. The results showed a higher corrosion rate in the HT samples than that of their LT counterparts. An extensive discussion is presented in light of the observed findings.

13.
Materials (Basel) ; 15(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35160991

RESUMO

Most of the food packaging materials used in the market are petroleum-based plastics; such materials are neither biodegradable nor environmentally friendly and require years to decompose. To overcome these problems, biodegradable and edible materials are encouraged to be used because such materials degrade quickly due to the actions of bacteria, fungi, and other environmental effects. In this work, commonly available household materials such as gelatin, soy protein, corn starch, and papaya were used to prepare cost-effective lab-scale biodegradable and edible packaging film as an effective alternative to commercial plastics to reduce waste generation. Prepared films were characterized in terms of Fourier transform infrared spectroscopy (FTIR), water vapor transmission rate (WVTR), optical transparency, and tensile strength. FTIR confirmed the addition of papaya and soy protein to the gelatin backbone. WVTR of the gelatin-papaya films was recorded to be less than 50 g/m2/day. This water vapor barrier was five times better than films of pristine gelatin. The gelatin, papaya, and soy protein films exhibited transparencies of around 70% in the visible region. The tensile strength of the film was 2.44 MPa, which improved by a factor of 1.5 for the films containing papaya and soy protein. The barrier qualities of the gelatin and gelatin-papaya films maintained the properties even after going through 2000 bending cycles. From the results, it is inferred that the prepared films are ideally suitable for food encapsulation and their production on a larger scale can considerably cut down the plastic wastage.

14.
Materials (Basel) ; 14(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34947257

RESUMO

Titanium (Ti)-based alloys (e.g., Ti6Al4V) are widely used in orthopedic implant applications owing to their excellent mechanical properties and biocompatibility. However, their corrosion resistance needs to be optimized. In addition, the presence of aluminum and vanadium cause alzheimer and cancer, respectively. Therefore, in this study, titanium-based alloys were developed via powder metallurgy route. In these alloys, the Al and V were replaced with tin (Sn) which was the main aim of this study. Four sets of samples were prepared by varying Sn contents, i.e., 5 to 20 wt. %. This was followed by characterization techniques including laser particle analyzer (LPA), X-ray diffractometer (XRD), scanning electron microscope (SEM), computerized potentiostate, vicker hardness tester, and nanoindenter. Results demonstrate the powder sizes between 50 and 55 µm exhibiting very good densification after sintering. The alloy contained alpha at all concentrations of Sn. However, as Sn content in the alloy exceeded from 10 wt. %, the formation of intermetallic compounds was significant. Thus, the presence of such intermetallic phases are attributed to enhanced elastic modulus. In particular, when Sn content was between 15 and 20 wt. % a drastic increase in elastic modulus was observed thereby surpassing the standard/reference alloy (Ti6Al4V). However, at 10 wt. % of Sn, the elastic modulus is more or less comparable to reference counterpart. Similarly, hardness was also increased in an ascending order upon Sn addition, i.e., 250 to 310 HV. Specifically, at 10 wt. % Sn, the hardness was observed to be 250 HV which is quite near to reference alloy, i.e., 210 HV. Moreover, tensile strength (TS) of the alloys were calculated using hardness values since it was very difficult to prepare the test coupons using powders. The TS values were in the range of 975 to 1524 MPa at all concentrations of Sn. In particular, the TS at 10 wt. % Sn is 1149 MPa which is comparable to reference counterpart (1168 MPa). The corrosion rate of Titanium-Sn alloys (as of this study) and reference alloy, i.e., Ti6Al4V were also compared. Incorporation of Sn reduced the corrosion rate at large than that of reference counterpart. In particular, the trend was in decreasing order as Sn content increased from 5 to 20 wt. %. The minimum corrosion rate of 3.65 × 10-9 mm/year was noticed at 20 wt. % than that of 0.03 mm/year of reference alloy. This shows the excellent corrosion resistance upon addition of Sn at all concentrations.

15.
Materials (Basel) ; 14(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34832401

RESUMO

Silica is one of the most efficient gas barrier materials, and hence is widely used as an encapsulating material for electronic devices. In general, the processing of silica is carried out at high temperatures, i.e., around 1000 °C. Recently, processing of silica has been carried out from a polymer called Perhydropolysilazane (PHPS). The PHPS reacts with environmental moisture or oxygen and yields pure silica. This material has attracted many researchers and has been widely used in many applications such as encapsulation of organic light-emitting diodes (OLED) displays, semiconductor industries, and organic solar cells. In this paper, we have demonstrated the process optimization of the conversion of the PHPS into silica in terms of curing methods as well as curing the environment. Various curing methods including exposure to dry heat, damp heat, deep UV, and their combination under different environments were used to cure PHPS. FTIR analysis suggested that the quickest conversion method is the irradiation of PHPS with deep UV and simultaneous heating at 100 °C. Curing with this method yields a water permeation rate of 10-3 g/(m2⋅day) and oxygen permeation rate of less than 10-1 cm3/(m2·day·bar). Rapid curing at low-temperature processing along with barrier properties makes PHPS an ideal encapsulating material for organic solar cell devices and a variety of similar applications.

16.
Materials (Basel) ; 14(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065936

RESUMO

Organic photovoltaics (OPVs) die due to their interactions with environmental gases, i.e., moisture and oxygen, the latter being the most dangerous, especially under illumination, due to the fact that most of the active layers used in OPVs are extremely sensitive to oxygen. In this work we demonstrate solution-based effective barrier coatings based on composite of poly(vinyl butyral) (PVB) and mica flakes for the protection of poly (3-hexylthiophene) (P3HT)-based organic solar cells (OSCs) against photobleaching under illumination conditions. In the first step we developed a protective layer with cost effective and environmentally friendly methods and optimized its properties in terms of transparency, barrier improvement factor, and bendability. The developed protective layer maintained a high transparency in the visible region and improved oxygen and moisture barrier quality by the factor of ~7. The resultant protective layers showed ultra-flexibility, as no significant degradation in protective characteristics were observed after 10 K bending cycles. In the second step, a PVB/mica composite layer was applied on top of the P3HT film and subjected to photo-degradation. The P3HT films coated with PVB/mica composite showed improved stability under constant light irradiation and exhibited a loss of <20% of the initial optical density over the period of 150 h. Finally, optimized barrier layers were used as encapsulation for organic solar cell (OSC) devices. The lifetime results confirmed that the stability of the OSCs was extended from few hours to over 240 h in a sun test (65 °C, ambient RH%) which corresponds to an enhanced lifetime by a factor of 9 compared to devices encapsulated with pristine PVB.

17.
J Nanosci Nanotechnol ; 21(4): 2483-2494, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33500066

RESUMO

The design of sensitive and efficient photo catalyst for the energy and environmental applications with minimum charge recombination rate and excellent photo conversion efficiency is a challenging task. Herein we have developed a nonmetal doping methodology into ZnO crystal using simple solvothermal approach. The boron (B) is induced into ZnO. The doping of B did not make any significant change on the morphology of ZnO nano rods as confirmed by scanning electron microscopy (SEM) without considerable change on periodic arrangement of nanostructures. The existence of B, Zn, and O is shown by energy dispersive spectroscopy (EDS). The X-ray diffraction (XRD) patterns are well matched to the hexagonal phase for both pristine ZnO and B-doped ZnO. The XRD has shown slight dislocation of 2theta degree. The UV-visible spectroscopy was used to measure the optical bandgap and photo catalytic activity for the degradation of organic dyes. The nonmetal doped ZnO has shown potential and outstanding photo catalytic activity for the photo degradation of methylene blue (MB), methyl orange (MO) and rhodamine B in aqueous solution. The photo degradation efficiency of MB, MO and rhodamine B is found to be 96%, 86% and 80% respectively. The enhanced photo catalytic activity of B-doped ZnO is indexed to the inhibited charge recombination rate due to the reduction in the optical bandgap. Based on the obtained results, it can be said that nonmetal doping is excellent provision for the design of active materials for the extended range of applications.

18.
J Nanosci Nanotechnol ; 21(4): 2520-2528, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33500070

RESUMO

Efficient hydrogen evolution reaction (HER) catalysts based on the earth-abundant materials are highly vital to design practical and environmentally friendly water splitting devices. In this study, we present an optimized strategy for the development of active catalysts for hydrogen evolution reaction HER. The composite catalysts are prepared with the nanosurface of NiO for the deposition of NiS by hydrothermal method. In alkaline electrolyte, the NiS/NiO nanocomposite has shown excellent catalytic HER properties at the low onset potential and small Tafel slope of 72 mVdec-1. A current density of 10 mA/cm² is achieved by the nanocomposite obtained with 0.4 gram of NiO as nanosurface for the deposition of NiS (sample 4) at the cost of 429 mV versus RHE. The sample 4 carries more active sites that allow it to act as excellent HER catalyst. Based on this study, we conclude that increasing the nickel oxide content into composite sample facilitates the HER process. Additionally, a long term HER stability for 10 hours and good durability is also demonstrated by the sample 4. Our findings reveal that the optimization of nickel oxide content in the preparation of catalyst leads to the excellent HER activity for the design of practical water splitting devices and other related applications.

19.
J Nanosci Nanotechnol ; 21(4): 2511-2519, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33500069

RESUMO

In this research work, we have produced a composite material consisting titanium dioxide (TiO2) and zinc oxide (ZnO) nanostructures via precipitation method. Scanning electron microscopy (SEM) study has shown the mixture of nanostructures consisting nanorods and nano flower. Energy dispersive spectroscopy (EDS) study has confirmed the presence of Ti, Zn and O as main elements in the composite. X-ray diffraction (XRD) study has revealed that the successful presence of TiO2 and ZnO in the composite. The composite material exhibits small optical energy band gap which led to reduction of the charge recombination rate of electron-hole pairs. The band gap for the composite TiO2/ZnO samples namely 1, 2, 3 and 4 is 3.18, 3.00, 2.97 and 2.83 eV respectively. Small optical bandgap gives less relaxation time for the recombination of electron and hole pairs, thus favorable photodegradation is found. The degradation efficiency for the TiO2/ZnO samples for methylene blue in order of 55.03%, 75.7%, 85.14% and 90.08% is found for the samples 1, 2, 3 and 4 respectively. The proposed study of titanium dioxide addition into ZnO is facile and inexpensive for the development of efficient photocatalysts. This can be capitalized at large scale for the energy and.

20.
J Nanosci Nanotechnol ; 21(4): 2529-2537, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33500071

RESUMO

We have fabricated ZnO nano rods by hydrothermal method and successively doped them with tin (Sn) using different concentrations of 25, 50, 75 and 100 mg of tin chloride. XRD of the fabricated structures showed that ZnO possess hexagonal wurtzite phase. Scanning electron microscopy (SEM) was used to explore the morphology and it shows nanorod like morphology for all samples and no considerable change in the structural features were found. The dimension of nanorod is 200 to 300 nm. The doped materials were then investigated for their photo catalytic degradation of environmental pollutant Rhodamine B. The performance of doped ZnO is compared with the pristine ZnO. Scanning electron microscopy (SEM) was used to explore the morphology and it shows nanorod like morphology for all samples and no considerable change in the structural features were found. The dimension of nanorod is 200 to 300 nm. XRD of the fabricated structures showed that ZnO possess hexagonal wurtzite phase. Photo catalytic activity of rhodamine B was investigated under UV light and a maximum degradation efficiency of 85% was obtained. The optical property reveals the reduction in band gap of upto 17.14% for 100 mg Sn doped ZnO. The degradation is followed by the pseudo order kinetics. The produced results are unique in terms of facile synthesis of Sn doped ZnO and excellent photo degradation efficiency, therefore these materials can be used for other environmental applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...